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Motivation data Model Parameters estimation Results Conclusion

Motivation

I SWGen are increasingly used as a complementary approach for precipitation simulation:

low costs and rapid simulations

uncertainty assessment

I Precipitation occurrences and intensities depend on atmospheric conditions

I Gaussian field based model (occurrence+intensity) estimated from rain gauge network + atmospheric
variables (used as covariables)

I Direct estimates of the model parameters are available only at locations with observed data

I To generate a complete precipitation field across the entire simulation domain one could:

include the geographical coordinates as covariates in the model (TSA)
estimate the parameters at the location of stations and spatially interpolate them (Kriging)

I Goal: compare the two approaches using a model based on Gaussian field
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Outline

I Data

I Precipitation generator based on Gaussian field

I Parameters estimation

I Results

I Conclusion
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Motivation data Model Parameters estimation Results Conclusion

Data

I Daily precipitation from 1980 to 2015 at 66 stations (North Rhine-Westphalia)

altitude varies from 28 to 840 m
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I Topography data from the Shuttle Radar Topography Mission (NASA)

I Covariates from ERA-Interim reanalysis

near surface variables: wind, dewpoint temperature
atmospheric variables (500hPa): geopotential, specific humidity, relative humidity, vertical velocity
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Motivation data Model Parameters estimation Results Conclusion

Model

I Use a Gaussian field to model the occurrence

I Transform the same Gaussian field to obtain nonzero amounts

I Assume the precipitation field Y (s, t) depends on the latent Gaussian variable Z(s, t):

Y (s, t) =

{
ψ (Z(s, t)) , if Z(s, t) > 0 =⇒ wet
0, if Z(s, t) ≤ 0 =⇒ dry

I Model components:

Anamorphosis ψ

Mean function µ = E [Z(s, t)]

Covariance structure Cov (Z(s1, t1), Z(s2, t2))
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Motivation data Model Parameters estimation Results Conclusion

1- Anamorphosis

ψ(.) = G−1
s,t ◦ Φµ(.)

Gs,t ↪→ Gamma (α(s, t) γ(s, t))
Φµ is a cdf of a censored normal random variable with mean µ and variance unity.

I if a day is wet i.e. Z(s, t) > 0,

Y (s, t) = G−1
s,t ◦ Φµ (Z(s, t))

I Include non-stationnarity and effect of external covariates in the gamma distribution

log(α(s, t)) = βα(s)X (s, t)

log(γ(s, t)) = βγ(s)X (s, t)

I Covariates are:

seasons, wind, dewpoint temperature, mean sea level pressure, potential vorticity .
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Motivation data Model Parameters estimation Results Conclusion

2- Mean function

I Link mean function of Z and the precipitation data Y through the probability of wet days:

p(s, t) = P (Y (s, t) > 0) = P (Z(s, t) > 0) = Φ (µ(s, t))

I Then,
µ̂(s, t) = Φ−1 (p̂s,t)

I Estimation of p(s, t) trough logistic regression (probit model)

p̂(s, t) = Φ
(
β
′
p(s)Xp(s, t)

)

I Covariates (Xp(s, t)) are:

seasons, wind, dewpoint temperature, geopotential, specific humidity, relative humidity, vertical velocity.
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Parameters estimation
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β estimation for d2m

I β are estimated at the station locations but we would also
like to simulate over the all domain

I Two approaches are used

Kriging approach: Estimation of β at the station
locations and smoothing over space using kriging
(Universal kriging)

Trend Surface Analysis (TSA) approach: Use of a
polynomial expansion of geographical coordinates as
covariates (Legendre polynomials)

I We aim to compare the two approaches
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Kriging approach: universal kriging

I β(s1), ..., β(sn) with β such as
E (β(s)) = az(s)

with z(s) being the altitude of station s and a the regression coeficient.

var (β(s)− β(s + h)) = 2γ(h).

We are looking for

β
∗(s0) =

∑
λiβ(si )

I Variogram
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Kriging approach: universal kriging

I Parameter associated to d2m
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I Parameter associated to msl
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TSA: Legendre polynomials

I To capture spatial variations, we use a series expansion using Legendre polynomials for longitude x,
latitude y and altitude z

I Example for the mean function

µ̂(s, t) = µclimat + µseason + µgeo + µint

with

µclimat =
C∑

c=1

βcXc

Xc reprents a large scale atmospheric variable

µseason = β0 +
I∑

i=1

[
βi,sin sin

(
2iπ

365.25
t

)
+ βi,cos cos

(
2iπ

365.25
t

)]

µgeo =
J∑

j=1

βj,PPj (x) +
K∑

k=1

βk,PPk (y) +
L∑

l=1

βl,PPl (z)

where Pj (.) is the j ieme Legendre polynomial used for x . µint is the interaction terms
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Motivation data Model Parameters estimation Results Conclusion

3- Covariance structure

I Stationary, isotropic covariance function

Cov (Z(si ), Z(sj )) = C (si , sj ) = C (‖ h ‖)

with h = si − sj

I Estimation of empirical covariance

I Fit a parametric covariance function

Exponential

C(h) = exp

(
−
‖ h ‖
ρ

)

Matérn

C(h) =
21−ν

Γ(ν)

(√
2ν ‖ h ‖
ρ

)ν
Kν

(√
2ν ‖ h ‖
ρ

)
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3- Covariance structure
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Calibration and validation stations

I 50 stations are used for calibration and 16 for validation

I Simulation of 100 time series from 1980 to 2015 for each approach (Kringing and TSA)
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Variogram winter
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Conclusion

I Two approaches of parameters estimation for Gaussain field based precipitation generator are compared

I Wet days frequency and spell length are globally well reproduced by two approaches

I TSA tends to underestimate precipitation intensities for some points.
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Thank you!
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