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Outline

1. Rainfall modelling with a latent, truncated, Gaussian field
Motivations
Model
Estimation / simulation

Benoit, L., Allard, D., & Mariethoz, G. (2018). Stochastic Rainfall Modelling at Sub Kilometer Scale. Water

Resources Research.

2. Using GMRF / SPDE representation to accelerate computations
Very short introduction to GMRF / SPDE
Illustrate how it can be used on a geoscience example

Marcotte, D., & Allard, D. (2018). Gibbs sampling on large lattice with GMRF. Computers & Geosciences, 111,

190-199.
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First part

Rainfall modelling with a latent, truncated, Gaussian field
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Motivation

Main Objective
Analyzing and modeling precipitation within a radar pixel i.e. at very fine scale

I Fine scale modeling of precipitations:
∼ min; ∼ 10 – 1000 m

I Accounting for large amount of 0
values

I Space-time dependence structure,
including transport (advection)

I Large data-set
I Bayesian analysis for (conditional)

simulation of rain events with
uncertainties on parameters
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New rain gauges

I New sorts of rain gauges, called
pluvimates

I Drop counting rain gauges
∼ 0.01 mm resolution

I Have been calibrated with lab
experiments

I Integration time is 30s
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Data 1/Lausanne
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Data 1/Lausanne

Space-time rain rate fluctuations as observed by a dense network of Pluvimates. (a) Global view of a stratiform (red,
3-4 January 2016) and a convective (black, 24-25 October 2016) rain events. (b) Zoom on a two hours period for the
convective event, and comparison between co-located (blue curves) and distant (red vs blue curves) measurement
locations.
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Data 2/ Alpine catchment
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Conceptual model

I Fine space-time scales
=⇒ stationarity

I Evolving shapes along time
=⇒ space-time correlation

I Dry-drift
=⇒ correlation between intensity
and presence of rainfall

I Advection of clouds
=⇒ transport term

I Diffusivity =⇒ non-separable ST
covariance function
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Hierarchical model

Latent Gaussian field
Allcroft and Glasbey (2003), Allard and Bourotte (2014), Baxevani and Lennartsson (2015), etc...

I Spatio-temporal coordinates (s, t) ∈ (D × T )

I Precipitations Rm(s, t) arise from a latent, standardized, stationary Gaussian
random field Y (s, t) with

Cov(Y (s, t),Y (s′, t ′)) = ρ(s′ − s, t ′ − t ;ηηη),

where ρ(·, ·, ηηη) is a spatio-temporal covariance function, with parameters ηηη
I Marginal transformation with truncation:

Rm(si , ti ) = ψ(Y (si , ti ) + εi ) =

(
Y (si , ti ) + εi − a0

a1

)1/a2
, ifY (si , ti ) ≥ a0

with εi ∼ N (0, σ2
ε) i.i.d and ααα = (a0, a1, a2)t .

I Rm(si , ti ) = 0 if Y (si , ti ) < a0.

Y (s, t) is hidden, since not observed when Rm(s, t) = 0.
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Spatio-temporal covariance model

Non separable spatio-temporal covariance function, with transport
Gneiting (2002), Gneiting et al. (2007), Ailliot et al. (2011), etc.
Bourotte et al. (2016) in the multivariate case.

I Advection is modeled by a single vector V with

ρ(||s′ − s|| − V(t ′ − t), |t ′ − t |) = ρL(||s′ − s||, |t ′ − t |). (1)

I Non separable model for ρL, with

ρL(h, u) =
1

(u/d)2δ + 1
exp

{
−(‖|h||/c)2γ{

(u/d)2δ + 1
}βγ

}
(h, u) ∈ R2 × R, (2)

with ηηη = (c, d , β, γ, δ,SV , θV , σ
2
ε).
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Separability

Definition
A covariance function is separable if

CST (h, u) ∝ CS(h)CT (u)

i.e.
ρST (h, u) = ρS(h)ρT (u)

Is the covariance function of:

Y (s, t) = YS(s).YT (t); ZS(s) ⊥ ZT (t)

Main property
Equivalent to

Z (s, t) ⊥ Z (s′, t ′) | Z (s, t ′)

∀s, s′ ∈ D; ∀t , t ′ ∈ T
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Separable models

Advantages
I Easy to understand
I Simplifies coding and memory storage
I Matrix computation are accelerated

But
I No complex interaction between space and time
I Overly simplistic for most applications on climate/weather variables

Need for non separable models
Here, we use the popular/widely used / flexible Gneiting class

Parameter β ∈ [0, 1] controls separability
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Likelihood

Let Rm(s1, t1), . . . ,Rm(sn, tn) be the rainfall measurements.

I For i = 1, . . . , n

Z (si , ti ) =

{
ψ−1(Rm(si , ti )) = a0 + a1Rm(si , ti )a2 when Rm(si , ti ) > 0

Z (si , ti ) ≤ a0 otherwise

I Let I = {i : Rm(si , ti ) > 0} and I0 = {i : Rm(si , ti ) = 0} and let R = (RI0 ,RI).

Likelihood

`(R;θθθ) = `(RI ;θθθ).P(RI0 ≤ 0 | RI ;θθθ),

where θθθ = (ααα,ηηη).
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Likelihood

Log-likelihood

L(R;θθθ) = L(RI ;θθθ) + log P(RI0 ≤ 0 | RI ;θθθ).

= −0.5 log |ΣΣΣI,I | − 0.5Zt
IΣΣΣ
−1
I,I ZI − NI log(2π)

+ log ΦNI0
(a0; ΣΣΣI0,IΣΣΣ

−1
I,I ,ΣΣΣI0,I0 + ΣΣΣI0,IΣΣΣ

−1
I,I ΣΣΣI,I0 )

with

ΣΣΣI,I [i, j] = ρL(sj − si − V(tj − ti ), tj − ti ) for i 6= j ∈ I, and ΣΣΣI,I [i, i] = 1 + σ2
ε

I Computing ΣΣΣ−1
I,I and |ΣΣΣI,I |: necessitate O(N3

I ) operations

I Computing ΦNI0
, which is a NI0 dimensional normal probabilities, see e.g. Genz

(1992, 2004, 2009, etc.) and R package mvtnorm.
I Limited to moderate size datasets, ∼ 1000 i.e. ' 2h with 8 pluvimates

If larger datasets: block likelihood (BL) or alternative strategies
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Estimation methods

Block Likelihood
I The original dataset is divided into a series of Nτ blocks, Bp of τ consecutive

measurements at all sites
I For p = 1, . . . ,Nτ , let

Ip = {i ∈ Bp : Rm(si , ti ) > 0}

I0
p = {i ∈ Bp : Rm(si , ti ) = 0}

I The Blockwise log-likelihood, LBL(R;θθθ) is

LBL(R;θθθ) =
∑Nτ

p=1

[
−0.5

(
|ΣΣΣIp,Ip |+ Zt

IpΣΣΣ−1
Ip,Ip

ZIp + NIp log(2π)
)

+ log Φ(a0; ΣΣΣI0p ,Ip
ΣΣΣ−1

Ip,Ip
,ΣΣΣI0p ,I

0
p
−ΣΣΣI0p ,Ip

ΣΣΣ−1
Ip,Ip

ΣΣΣIp,I0p
)
]
.

What size of blocks ?
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Bayesian setting

The full model is

Rm(si , ti ) = ψ(Y (si , ti ))

Y (·, ·) ∼ G(ρ) + ε; ρ : V and ρL(h, u) ∼ Gneiting class

ε ∼ i.i.d. N (0, σ2
ε)

σ2
ε ∼ πε

ηηη ∼ πηηη

ααα ∼ πααα

V ∼ πV

I All parameters are independent
I Gibbs for censored Y (·, ·) within Metropolis Hastings for θθθ
I Uniform vague priors
I Random Walk proposals
I 5000 iterations for burn-in; 10000 iterations; 100 samples
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Data

Synthetic data
Situation mimicking real data

I 400 60s-measurements. ⇒ 6h40m
I 9 pluvimates on 1000m × 1000m regular grid
I ρL: c = 5000m, γ = 0.5, d = 1000s, δ = 0.8, β = 0.8, σε = 0.2
I V: Sv = 5m/s, θv = 0
I Transform: a0 = −0.5, a1 = 0.6, a2 = 0.5
I 100 blocks of size 4; 4 blocks of size 100; 1 block of size 400

CPU
I Matlab; 20 cores machine for matrix inversion (Intel Xéon CPU E5-2699 v4,

2.2GHz)
I From 45’ (BL4) to 550’ (BL100) and 1300’ (BL400)
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Synthetic data – Posteriors
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De we need sophisticated models ?

Experiment: we model from the complete model, and estimate according to
I Model A: No advection & separable covariance function [Kleiber et al, 2012;

Baxevani and Lennartsson, 2015].

ρL(h, u) =
1

(u/d)2δ + 1
exp

{
−||h||

c

}
(h, u) ∈ R2 × R,

with δ = 1/2
I Model B: Advection V, separable covariance function [Lepioufle et al., 2012;

Leblois and Creutin, 2013; Bárdossy and Pegram, 2016]).

ρL(h, u) =
1

(u/d) + 1
exp

{
−||h||+ Vu

c

}
(h, u) ∈ R2 × R,

I Model C: Complete model, as above
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Unconditional simulation

Figure: Reproduction of rainfall statistics by unconditional simulation. Rows correspond to the
summary statistics: Row 1: histogram, Row 2: Dry Drift, Row 3: temporal variogram. The solid lines
are the medians of realizations while the dashed lines are Q10 and Q90.
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Unconditional simulation

Figure: Reproduction of rainfall statistics by unconditional simulation. Rows correspond to spatial
correlogram, along East-West and North-South direction respectively. The solid lines are the
medians of realizations while the dashed lines are Q10 and Q90.
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De we need sophisticated models ?

YES !
I C better than B better than A
I Advection is particularly important for spatial variogram
I In addition, non separability is important for dry drift

BUT ...
I Dry-drift is still under-represented
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Lausanne – Estimation
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Lausanne – Simulations
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Alpine catchment – Estimation
1 & 3: shower events; 2 & 3: convective events. 4: stratiform event
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Alpine catchment – Simulations
1 & 3: shower events; 2 & 3: convective events. 4: stratiform event
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Challenge: censored latent Gaussian process for large datasets

Full likelihood / conditional simulation
I Either compute ΦNI0

I Or simulate conditional truncated Gaussian with M-H step

Computer intensive if dataset is large.

Composite likelihood
I products of smaller likelihoods Varin et al. (2011)⇒ easy to compute, e.g. pairs or

smaller blocks
I Pairwise Likelihood (PL) is efficient and unbiased, see e.g. Bevilacqua and

Gaetan (2015), Bourotte et al. (2016)
I But PL is under dispersed⇒ cannot be used directly in a Bayesian setting
I Adjustments and re-calibration proposed in Ribatet et al. (2012) and Stoehr and

Friel (2015).

Hierarchical nearest-neighbor Gaussian process
Datta, A., Banerjee, S., Finley, A.O., and Gelfand, A.E. 2016. Hierarchical nearest-neighbor Gaussian process

models for large geostatistical datasets. JASA, 111, 800–812.
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Second part

Using GMRF / SPDE representation to accelerate computation

I Will be illustrated on spatial data
I Still to be implemented for spatio-temporal data
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GMRF – SPDE approach

Sparse precision matrices

Some Matérn spatial covariance matrices induce sparse precision matrices Q = C−1

Lindgren et al. (2011)

C(h) =
σ2

2ν−1Γ(ν)
(||h||/r)νKν(||h||/r)

when ν + d/2 is an integer

I Conditional densities depends only on a few nearest neighbors
I Identical for all pixels, except border effects
I Fast determinant / likelihood computations
I Efficient parallel simulation possible⇒ larger datasets
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GMRF – SPDE approach

Example: d = 2, ν = 1: Each pixel has only 14 non-zero entries. Top right quadrant
reads

with a = 4 + r−2.
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Application to latent truncated Gaussian fields
Three categories: yellow if Y (s) ≤ a1; green if a1 < Y (s) ≤ a2; blue if Y (s) > a2.

Aim: simulate Y (s) conditional on categories (left).

Algorithm
I Initial configuration: at each si , generate

truncated Gaussian RV, conditional on
category

I Iterate until convergence criterion:
visit each site si , i = 1, . . . , N

1. Generate Gaussian value∼ Y (si ) | sNi
2. Accept if category OK, otherwise go to 1.

I Parallel implementation
possible on a 14-colour
chessboard

I High acceptance rate thanks
to truncation

I Convergence gets slower as
ν and r increase
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Discussion

Done:
I Flexible spatio-temporal model to simulate rainfall events at very fine scale
I Includes transport and non-separability on Lagrangian correlation function
I Bayesian setting allows to simulate events with parameters drawn from the

posterior

To do:
I Accelerate simulation using tricks inspired by GMRF/SPDE approach
I Does not model inter-event waiting time
I Catalogue of parameters according to type of events?
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