		GMRF/SPDE	References

Space-time stochastic rainfall modelling at sub-kilometer scale

Denis Allard, with Lionel Benoit and Grégoire Mariethoz (U. Lausanne), and with Denis Marcotte (Polytechnique Montréal)

Biostatistics and Spatial Processes (BioSP), MIA division, INRA Avignon, France

DESIRES - atelier spatiotempmeteo

Rennes, 28-30 novembre 2018

Introduction		GMRF/SPDE	References
Outline			

- 1. Rainfall modelling with a latent, truncated, Gaussian field
 - Motivations
 - Model
 - Estimation / simulation

Benoit, L., Allard, D., & Mariethoz, G. (2018). Stochastic Rainfall Modelling at Sub Kilometer Scale. Water Resources Research.

- 2. Using GMRF / SPDE representation to accelerate computations
 - Very short introduction to GMRF / SPDE
 - Illustrate how it can be used on a geoscience example

Marcotte, D., & Allard, D. (2018). Gibbs sampling on large lattice with GMRF. *Computers & Geosciences*, 111, 190-199.

Introduction		GMRF/SPDE	References
Outline			

- 1. Rainfall modelling with a latent, truncated, Gaussian field
 - Motivations
 - Model
 - Estimation / simulation

Benoit, L., Allard, D., & Mariethoz, G. (2018). Stochastic Rainfall Modelling at Sub Kilometer Scale. Water Resources Research.

- 2. Using GMRF / SPDE representation to accelerate computations
 - Very short introduction to GMRF / SPDE
 - Illustrate how it can be used on a geoscience example

Marcotte, D., & Allard, D. (2018). Gibbs sampling on large lattice with GMRF. *Computers & Geosciences*, 111, 190-199.

Introduction		GMRF/SPDE	References

First part

Rainfall modelling with a latent, truncated, Gaussian field

Introduction		GMRF/SPDE	References
Motivation			

Main Objective

Analyzing and modeling precipitation within a radar pixel i.e. at very fine scale

- $\blacktriangleright\,$ Fine scale modeling of precipitations: $\sim\,$ min; $\,\,\sim\,$ 10 1000 m
- Accounting for large amount of 0 values
- Space-time dependence structure, including transport (advection)
- Large data-set
- Bayesian analysis for (conditional) simulation of rain events with uncertainties on parameters

Introduction		GMRF/SPDE	References

New rain gauges

- New sorts of rain gauges, called pluvimates
- Drop counting rain gauges \sim 0.01 mm resolution
- Have been calibrated with lab experiments
- Integration time is 30s

Introduction		GMRF/SPDE	References

Data 1/Lausanne

4 ロ ト 4 日 ト 4 目 ト 4 目 ト 目 少 9 9 9
6/33

Introduction		GMRF/SPDE	References

Data 1/Lausanne

Space-time rain rate fluctuations as observed by a dense network of Pluvimates. (a) Global view of a stratiform (red, 3-4 January 2016) and a convective (black, 24-25 October 2016) rain events. (b) Zoom on a two hours period for the convective event, and comparison between co-located (blue curves) and distant (red vs blue curves) measurement locations.

Introduction		GMRF/SPDE	References

Data 2/ Alpine catchment

8/33

Introduction		GMRF/SPDE	References

Conceptual model

- Fine space-time scales
 ⇒ stationarity
- Evolving shapes along time
 space-time correlation
- Dry-drift
 - \Longrightarrow correlation between intensity and presence of rainfall
- Advection of clouds

 ⇒ transport term
- Diffusivity => non-separable ST covariance function

Model		GMRF/SPDE	References

Hierarchical model

Latent Gaussian field

Allcroft and Glasbey (2003), Allard and Bourotte (2014), Baxevani and Lennartsson (2015), etc...

- Spatio-temporal coordinates $(\mathbf{s}, t) \in (D \times T)$
- Precipitations R_m(s, t) arise from a latent, standardized, stationary Gaussian random field Y(s, t) with

$$Cov(Y(\mathbf{s},t),Y(\mathbf{s}',t')) = \rho(\mathbf{s}'-\mathbf{s},t'-t;\boldsymbol{\eta}),$$

where $\rho(\cdot, \cdot, \eta)$ is a spatio-temporal covariance function, with parameters η Marginal transformation with truncation:

$$R_m(\mathbf{s}_i, t_i) = \psi(Y(\mathbf{s}_i, t_i) + \epsilon_i) = \left(\frac{Y(\mathbf{s}_i, t_i) + \epsilon_i - a_0}{a_1}\right)^{1/a_2}, \quad \text{if } Y(\mathbf{s}_i, t_i) \ge a_0$$

with $\epsilon_i \sim \mathcal{N}(0, \sigma_{\epsilon}^2)$ i.i.d and $\boldsymbol{\alpha} = (a_0, a_1, a_2)^t$. $\triangleright R_m(\mathbf{s}_i, t_i) = 0$ if $Y(\mathbf{s}_i, t_i) < a_0$.

 $Y(\mathbf{s}, t)$ is hidden, since not observed when $R_m(\mathbf{s}, t) = 0$.

Model		GMRF/SPDE	References

Spatio-temporal covariance model

Non separable spatio-temporal covariance function, with transport

Gneiting (2002), Gneiting et al. (2007), Ailliot et al. (2011), etc. Bourotte et al. (2016) in the multivariate case.

Advection is modeled by a single vector V with

$$\rho(||\mathbf{s}' - \mathbf{s}|| - \mathbf{V}(t' - t), |t' - t|) = \rho_L(||\mathbf{s}' - \mathbf{s}||, |t' - t|).$$
(1)

• Non separable model for ρ_L , with

$$\rho_{L}(\mathbf{h}, u) = \frac{1}{(u/d)^{2\delta} + 1} \exp\left\{\frac{-(|||\mathbf{h}||/c)^{2\gamma}}{\{(u/d)^{2\delta} + 1\}^{\beta\gamma}}\right\} \quad (\mathbf{h}, u) \in \mathbb{R}^{2} \times \mathbb{R}, \quad (2)$$

with $\boldsymbol{\eta} = (\boldsymbol{c}, \boldsymbol{d}, \boldsymbol{\beta}, \gamma, \delta, \boldsymbol{S}_{V}, \theta_{V}, \sigma_{\epsilon}^{2}).$

Model		GMRF/SPDE	References

Separability

Definition

A covariance function is separable if

 $C_{ST}(\mathbf{h}, u) \propto C_S(\mathbf{h}) C_T(u)$

i.e.

$$\rho_{ST}(\mathbf{h}, u) = \rho_{S}(\mathbf{h})\rho_{T}(u)$$

Is the covariance function of:

$$Y(\mathbf{s},t) = Y_{\mathcal{S}}(\mathbf{s}).Y_{\mathcal{T}}(t); \qquad Z_{\mathcal{S}}(\mathbf{s}) \perp Z_{\mathcal{T}}(t)$$

Main property

Equivalent to

$$Z(\mathbf{s},t) \perp Z(\mathbf{s}',t') \mid Z(\mathbf{s},t')$$

 $\forall \mathbf{s}, \mathbf{s}' \in D; \quad \forall t, t' \in T$

Model		GMRF/SPDE	References

Separable models

Advantages

- Easy to understand
- Simplifies coding and memory storage
- Matrix computation are accelerated

But

- No complex interaction between space and time
- Overly simplistic for most applications on climate/weather variables

Need for non separable models

Here, we use the popular/widely used / flexible Gneiting class

Parameter $\beta \in [0, 1]$ controls separability

	Model		GMRF/SPDE	References
Likelihood				

Let $R_m(\mathbf{s}_1, t_1), \ldots, R_m(\mathbf{s}_n, t_n)$ be the rainfall measurements.

For
$$i = 1, ..., n$$

$$Z(\mathbf{s}_i, t_i) = \begin{cases} \psi^{-1}(R_m(\mathbf{s}_i, t_i)) = a_0 + a_1 R_m(\mathbf{s}_i, t_i)^{a_2} & \text{when } R_m(\mathbf{s}_i, t_i) > 0\\ Z(\mathbf{s}_i, t_i) \leq a_0 & \text{otherwise} \end{cases}$$

• Let
$$I = \{i : R_m(\mathbf{s}_i, t_i) > 0\}$$
 and $I^0 = \{i : R_m(\mathbf{s}_i, t_i) = 0\}$ and let $\mathbf{R} = (\mathbf{R}_{I^0}, \mathbf{R}_{I})$.

Likelihood

$$\ell(\mathsf{R};\boldsymbol{\theta}) = \ell(\mathsf{R}_{l};\boldsymbol{\theta}).\mathbb{P}(\mathsf{R}_{l^{0}} \leq \mathbf{0} \mid \mathsf{R}_{l};\boldsymbol{\theta}),$$

where $\boldsymbol{\theta} = (\boldsymbol{\alpha}, \boldsymbol{\eta}).$

Model		GMRF/SPDE	References

Likelihood

Log-likelihood

$$\begin{split} L(\mathbf{R}; \boldsymbol{\theta}) &= L(\mathbf{R}_{l}; \boldsymbol{\theta}) + \log \mathbb{P}(\mathbf{R}_{l^{0}} \leq \mathbf{0} \mid \mathbf{R}_{l}; \boldsymbol{\theta}). \\ &= -0.5 \log |\mathbf{\Sigma}_{l,l}| - 0.5 \mathbf{Z}_{l}^{t} \mathbf{\Sigma}_{l,l}^{-1} \mathbf{Z}_{l} - N_{l} \log(2\pi) \\ &+ \log \Phi_{N_{l^{0}}}(\mathbf{a}_{0}; \mathbf{\Sigma}_{l^{0},l} \mathbf{\Sigma}_{l,l}^{-1}, \mathbf{\Sigma}_{l^{0},l^{0}} + \mathbf{\Sigma}_{l_{0},l} \mathbf{\Sigma}_{l,l}^{-1} \mathbf{\Sigma}_{l,l^{0}}) \end{split}$$

with

$$\mathbf{\Sigma}_{I,I}[i,j] = \rho_L(\mathbf{s}_j - \mathbf{s}_i - \mathbf{V}(t_j - t_i), t_j - t_i) \text{ for } i \neq j \in I, \text{ and } \mathbf{\Sigma}_{I,I}[i,i] = 1 + \sigma_{\epsilon}^2$$

• Computing $\Sigma_{l,l}^{-1}$ and $|\Sigma_{l,l}|$: necessitate $\mathcal{O}(N_l^3)$ operations

- Computing Φ_{N_ρ}, which is a N_ρ dimensional normal probabilities, see e.g. Genz (1992, 2004, 2009, etc.) and R package mvtnorm.
- ▶ Limited to moderate size datasets, ~ 1000 i.e. ~ 2h with 8 pluvimates

If larger datasets: block likelihood (BL) or alternative strategies

		Estimation	GMRF/SPDE	References
Estimatio	n methods			

Block Likelihood

- ► The original dataset is divided into a series of N_{τ} blocks, B_p of τ consecutive measurements at all sites
- For $p = 1, \ldots, N_{\tau}$, let

$$\begin{array}{rcl} I_p & = & \{i \in B_p : R_m(\mathbf{s}_i, t_i) > 0\} \\ I_p^0 & = & \{i \in B_p : R_m(\mathbf{s}_i, t_i) = 0\} \end{array}$$

▶ The Blockwise log-likelihood, $L_{BL}(\mathbf{R}; \boldsymbol{\theta})$ is

$$\begin{split} L_{BL}(\mathbf{R}; \boldsymbol{\theta}) &= \sum_{\rho=1}^{N_{\tau}} \quad \left[-0.5 \left(|\mathbf{\Sigma}_{l_{\rho}, l_{\rho}}| + \mathbf{Z}_{l_{\rho}}^{t} \mathbf{\Sigma}_{l_{\rho}, l_{\rho}}^{-1} \mathbf{Z}_{l_{\rho}} + N_{l_{\rho}} \log(2\pi) \right) \\ &+ \log \Phi(a_{0}; \mathbf{\Sigma}_{l_{\rho}^{0}, l_{\rho}} \mathbf{\Sigma}_{l_{\rho}^{0}, l_{\rho}}^{-1}, \mathbf{\Sigma}_{l_{\rho}^{0}, l_{\rho}^{0}} - \mathbf{\Sigma}_{l_{\rho}^{0}, l_{\rho}} \mathbf{\Sigma}_{l_{\rho}^{0}, l_{\rho}^{0}}^{-1} \mathbf{\Sigma}_{l_{\rho}^{0}, l_{\rho}^{0}} \mathbf{\Sigma}_{l_{\rho}^{0}, l_{\rho}^{0}}^{-1} \right]. \end{split}$$

What size of blocks ?

		Estimation	GMRF/SPDE	References
_				

Bayesian setting

The full model is

$$\begin{array}{rcl} \mathcal{R}_{m}(\mathbf{s}_{i},t_{i}) & = & \psi(Y(\mathbf{s}_{i},t_{i})) \\ Y(\cdot,\cdot) & \sim & \mathcal{G}(\rho) + \epsilon; \quad \rho: \ \mathbf{V} \ \text{and} \ \rho_{L}(\mathbf{h},u) \sim \text{Gneiting class} \\ \epsilon & \sim & \text{i.i.d.} \ \mathcal{N}(\mathbf{0},\sigma_{\epsilon}^{2}) \\ \sigma_{\epsilon}^{2} & \sim & \pi_{\epsilon} \\ \boldsymbol{\eta} & \sim & \pi_{\boldsymbol{\eta}} \\ \boldsymbol{\alpha} & \sim & \pi_{\boldsymbol{\alpha}} \\ \mathbf{V} & \sim & \pi_{\mathbf{V}} \end{array}$$

- All parameters are independent
- Gibbs for censored $Y(\cdot, \cdot)$ within Metropolis Hastings for θ
- Uniform vague priors
- Random Walk proposals
- 5000 iterations for burn-in; 10000 iterations; 100 samples

		Results	GMRF/SPDE	References
Data				

Synthetic data

Situation mimicking real data

- ▶ 400 60s-measurements. ⇒ 6h40m
- 9 pluvimates on 1000m × 1000m regular grid
- ▶ ρ_L : c = 5000m, $\gamma = 0.5$, d = 1000s, $\delta = 0.8$, $\beta = 0.8$, $\sigma_e = 0.2$
- V: Sv = 5m/s, $\theta_v = 0$
- Transform: $a_0 = -0.5$, $a_1 = 0.6$, $a_2 = 0.5$
- 100 blocks of size 4; 4 blocks of size 100; 1 block of size 400

CPU

- Matlab; 20 cores machine for matrix inversion (Intel Xéon CPU E5-2699 v4, 2.2GHz)
- From 45' (BL4) to 550' (BL100) and 1300' (BL400)

	Results	GMRF/SPDE	References

Synthetic data – Posteriors

	Results	GMRF/SPDE	References

De we need sophisticated models ?

Experiment: we model from the complete model, and estimate according to

 Model A: No advection & separable covariance function [Kleiber et al, 2012; Baxevani and Lennartsson, 2015].

$$\rho_L(\mathbf{h}, u) = \frac{1}{(u/d)^{2\delta} + 1} \exp\left\{\frac{-||\mathbf{h}||}{c}\right\} \quad (\mathbf{h}, u) \in \mathbb{R}^2 \times \mathbb{R},$$

with $\delta = 1/2$

 Model B: Advection V, separable covariance function [Lepioufle et al., 2012; Leblois and Creutin, 2013; Bárdossy and Pegram, 2016]).

$$\rho_L(\mathbf{h}, u) = \frac{1}{(u/d) + 1} \exp\left\{\frac{-||\mathbf{h}|| + \mathbf{V}u}{c}\right\} \quad (\mathbf{h}, u) \in \mathbb{R}^2 \times \mathbb{R}$$

イロト イポト イヨト イヨト 一日

Model C: Complete model, as above

Introduction N	lodel	Estimation	Results	GMRF/SPDE	References

Unconditional simulation

Figure: Reproduction of rainfall statistics by unconditional simulation. Rows correspond to the summary statistics: Row 1: histogram, Row 2: Dry Drift, Row 3: temporal variogram. The solid lines are the medians of realizations while the dashed lines are Q10 and Q90.

21/33

	Results	GMRF/SPDE	References

Unconditional simulation

Figure: Reproduction of rainfall statistics by unconditional simulation. Rows correspond to spatial correlogram, along East-West and North-South direction respectively. The solid lines are the medians of realizations while the dashed lines are Q10 and Q90.

	Results	GMRF/SPDE	References

De we need sophisticated models ?

YES !

- C better than B better than A
- Advection is particularly important for spatial variogram
- In addition, non separability is important for dry drift

BUT ...

Dry-drift is still under-represented

	Results	GMRF/SPDE	References

Lausanne - Estimation

	Results	GMRF/SPDE	References

Lausanne – Simulations

(b) Convective event

	Results	GMRF/SPDE	References

Alpine catchment – Estimation

1 & 3: shower events; 2 & 3: convective events. 4: stratiform event

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

	Results	GMRF/SPDE	References

Alpine catchment – Simulations

1 & 3: shower events; 2 & 3: convective events. 4: stratiform event

E ∽ Q (~ 27/33

	Results	GMRF/SPDE	References

Challenge: censored latent Gaussian process for large datasets

Full likelihood / conditional simulation

- Either compute Φ_{N₁₀}
- Or simulate conditional truncated Gaussian with M-H step

Computer intensive if dataset is large.

Composite likelihood

- ▶ products of smaller likelihoods Varin et al. (2011) ⇒ easy to compute, e.g. pairs or smaller blocks
- Pairwise Likelihood (PL) is efficient and unbiased, see e.g. Bevilacqua and Gaetan (2015), Bourotte et al. (2016)
- But PL is under dispersed \Rightarrow cannot be used directly in a Bayesian setting
- Adjustments and re-calibration proposed in Ribatet et al. (2012) and Stoehr and Friel (2015).

Hierarchical nearest-neighbor Gaussian process

Datta, A., Banerjee, S., Finley, A.O., and Gelfand, A.E. 2016. Hierarchical nearest-neighbor Gaussian process models for large geostatistical datasets. JASA, 111, 800–812.

		GMRF/SPDE	References

Second part

Using GMRF / SPDE representation to accelerate computation

- Will be illustrated on spatial data
- Still to be implemented for spatio-temporal data

		GMRF/SPDE	References

GMRF – SPDE approach

Sparse precision matrices

Some Matérn spatial covariance matrices induce sparse precision matrices $\mathbf{Q} = \mathbf{C}^{-1}$ Lindgren et al. (2011)

$$C(\mathbf{h}) = \frac{\sigma^2}{2^{\nu-1}\Gamma(\nu)} (||\mathbf{h}||/r)^{\nu} \mathcal{K}_{\nu}(||\mathbf{h}||/r)$$

when $\nu + d/2$ is an integer

- Conditional densities depends only on a few nearest neighbors
- Identical for all pixels, except border effects
- Fast determinant / likelihood computations
- ► Efficient parallel simulation possible ⇒ larger datasets

		GMRF/SPDE	References

GMRF – SPDE approach

Example: $d = 2, \nu = 1$: Each pixel has only 14 non-zero entries. Top right quadrant reads

$$\sigma^2 \begin{vmatrix} 1 & 0 & 0 \\ -2a & 2 & 0 \\ 4 + a^2 & -2a & 1 \end{vmatrix}$$

with $a = 4 + r^{-2}$.

		GMRF/SPDE	References

Application to latent truncated Gaussian fields

Three categories: yellow if $Y(\mathbf{s}) \le a_1$; green if $a_1 < Y(\mathbf{s}) \le a_2$; blue if $Y(\mathbf{s}) > a_2$.

Aim: simulate $Y(\mathbf{s})$ conditional on categories (left).

Algorithm

- Initial configuration: at each s_i, generate truncated Gaussian RV, conditional on category
- Iterate until convergence criterion:
 - visit each site \mathbf{s}_i , $i = 1, \ldots, N$
 - 1. Generate Gaussian value ~ $Y(\mathbf{s}_i) | \mathbf{s}_{\mathcal{N}_i}$
 - 2. Accept if category OK, otherwise go to 1.

- Parallel implementation possible on a 14-colour chessboard
- High acceptance rate thanks to truncation
- Convergence gets slower as *ν* and *r* increase

< ロ > < 同 > < 回 > < 回 >

		GMRF/SPDE	References

Discussion

Done:

- Flexible spatio-temporal model to simulate rainfall events at very fine scale
- Includes transport and non-separability on Lagrangian correlation function
- Bayesian setting allows to simulate events with parameters drawn from the posterior

To do:

- Accelerate simulation using tricks inspired by GMRF/SPDE approach
- Does not model inter-event waiting time
- Catalogue of parameters according to type of events?

		GMRF/SPDE	References

Bibliography

- Ailliot, P., Baxevani, A., Cuzol, A., Monbet, V., & Raillard, N. (2011). Space?time models for moving fields with an application to significant wave height fields. Environmetrics, 22(3), 354-369.
- Ailliot, P., Allard, D., Monbet, V., and Naveau, P. (2015). Stochastic weather generators: an overview of weather type models. Journal de la Société Francaise de Statistique, 156(1).
- Allard, D. and Bourotte, M. (2014). Disaggregating daily precipitations into hourly values with a transformed censored latent Gaussian process. preprint.
- Baxevani, A. and Lennartsson, J. (2015). A spatiotemporal precipitation generator based on a censored latent gaussian field. Water Resources Research.
- Benoit, L. and Allard, D. and Mariethoz, G. (2018). Stochastic Rainfall Modelling at Sub Kilometer Scale. Water Resources Research
- Bevilacqua, M. and Gaetan, C. (2015). Comparing composite likelihood methods based on pairs for spatial Gaussian random fields. Statistics and Computing, 25(5):877–892.
- Bourotte, M., Allard, D., and Porcu, E. (2016). A flexible class of non-separable cross-covariance functions for multivariate space-time data. Spatial Statistics, 18, 125–146.
- Gneiting, T. (2002). Nonseparable, stationary covariance functions for space-time data. Journal of the American Statistical Association, 97(458):590–600.
- Gneiting, T., Genton, M., and Guttorp, P. (2007). Geostatistical space-time models, stationarity, separability and full symmetry. In Finkenstädt, B., Held, L., and Isham, V., editors, Statistical Methods for Spatio-Temporal Systems, pages 151–175. Chapman & Hall/CRC.
- Gneiting, T., Kleiber, W., and Schlather, M. (2010). Matérn cross-covariance functions for multivariate random fields. Journal of the American Statistical Association, 105(491):1167–1177.
- Lindgren, F., Rue, H., Lindström, J. (2011). An explicit link between Gaussian fields and Gaussian Markov random fields: the stochastic partial differential equation approach. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 73(4), 423-498.
- Marcotte, D. and Allard, D. (2018). Gibbs sampling on large lattice with GMRF. Computers & Geosciences, 111, 190-199.
- Ribatet, M., Cooley, D., Davison, A. C. (2012). Bayesian inference from composite likelihoods, with an application to spatial extremes. Statistica Sinica, 813-845.
- Stoehr, J., Friel, N. (2015). Calibration of conditional composite likelihood for Bayesian inference on Gibbs random fields. (AISTATS).
- Varin, C., Reid, N., and Firth, D. (2011). An overview of composite likelihood methods. Statistica Sinica, 21(1): 5-42.