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Introduction

Weather is inherently one of the most important factors
deciding farming practices related to:

Land use
Yield improvement or hedging measures
Economic policies in agricultural sectors

While the hedging solutions against climatic hazard remain
under developed outside of US and Canada
(Paulson et al. 2010)

⇒ According to the CRED, in 2016, the economic losses
due to floods and droughts continue to increase, making
them one of the most damaging natural disasters for our
economies worldwide.
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Commodities and Weather Risk

Figure: El Niño background, source: nab
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Impact of El Niño

El Niño affects temperature and rainfall in North and South
America, Africa, East and Southeast Asia, the Indian
subcontinent, Australia and the Pacific.

Locally, the phenomenon causes generally lower winter and
spring rainfall in northern and eastern Australia.

The impact of any given El Niño event is highly variable. Many
previous El Niño events have been associated with lower farm
GDP. Real farm GDP declined between 0.7% and 25.4% during
the last five El Niños, with an average decline of 12.6%.

"Pressing need for an adapted, durable and scalable hedging
solution" (OECD)

⇒ who fosters the development of insurance products such as
weather, crop or revenue insurance policies which could help the
agricultural businesses to overcome the more frequent and
damaging weather events.
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Accounting basics

The Balance Sheet

Figure: Balance Sheet

Double entry principle means that assets always equal liabilities

In our case we are going to model the dynamic of the assets⇔
dynamic of the liabilities =⇒ dynamic of the profits

The profits are thus partially explaining the dynamic of the assets
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Merton’s Model

Merton’s Main Assumptions

No transaction costs nor taxes.

We can borrow and lend at the same rate of interest

Short sales of all assets are allowed

The MM proposition I is holding

The term structure is flat and known with certainty which means
that at time t a $1 nominal bond value of maturity T equals:

P(t ,T ) = e−r(T−t) (1)

Where r is the risk free rate.

We can describe the value of the firm, V , with a diffusion type
stochastic process

Value of the assets follows a Geometric Brownian Motion:
Merton derived the value of three assets among which the
zero-coupon (but also the coupon-bearing and callable bonds)

dVt = Vt ([r − δ]dt + σdWt ) (2)

With V0 > 0 and δ is the constant cash-flow payout ratio.
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Merton’s Model

Merton’s Model Breakthroughs

1 The company issue a zero-coupon bond with face value B and
maturity T .

2 Default occurs when the value VT of the asset is below the level
of the debt B.

3 Default may occur only at date T in which case the creditors
take over the firm without incurring any distress costs and realize
the amount VT , so the payoff to the creditor at time T is:

D(VT ,T ) = min(VT ,B) = B−max(B − VT ,0)

max(B − VT ,0) is nothing else than a Short Put option on the
Assets of the company, with strike B

Figure: Short Put on Assets

.
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Merton’s Model

Merton’s Model Breakthroughs (cont’d)

On the contrary, the shareholder:

1 Owns the company Vt
2 Issued (sold) the bond B
3 Owns the put option on the assets with strike B??

=⇒ Put-call parity tells us that the shareholder holds a call:

E(Vt ,T ) = VT − B + max(B − VT ,0) = max(VT − B,0) (3)

So at time t the value of the bond and the stock are:

D(Vt ,T ) = B − Put(Vt ,B, r ,R − t , σ)

E(Vt , t) = Call(Vt ,B, r ,T − t , σ)
(4)

Figure: Long Call on Assets

.
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Merton’s Model

Whys and Wherefores of the Merton’s Model

As far as we know the diffusion process associated to the assets
we can obtain the value of the debt and the equity of a given
company through the Black, Scholes and Merton (1973) formula:

C [Vt ,B, r ,T − t , σ] = Ct = N(d1)Vt − N(d2)Be−r(T−t)

P [Vt ,B, r ,T − t , σ] = Pt = Ct + Be−r(T−t)−Vt
(5)

where:

d1 =
ln
(Vt

B

)
+
(

r + σ2

2

)
(T − t)

σ
√

T − t
d2 = d1 − σ

√
T − t

(6)
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Merton’s Model

Whys and Wherefores of the Merton’s Model (cont’d)

We then get the probability of default PDi for any company
i as far as we manage to model the asset dynamic At .

Figure: Graph representation of the Merton’s Theory.

Contribution of our work: How can we model farms assets
dynamic using price of the commodities and weather
conditions?
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Farm’s Asset Modelling

Assumptions

For each farmer we know the breakdown of land use per type of
crop

The asset value of a farm is a cumulative function of the farm
profits (under the retained earnings mechanism)

Conditional on the global filtration, we define an adapted
process for the asset value of farm i at time t :

Ai
t |Ft−1 = [Ai

t−1 + R i
t +4E i

t +4Di
t , |Ft−1] (7)

If we assume that the farmer will not issue debt or equity from
one year to another 4E i

t = 0 and 4Di
t = 0:

Ai
t |Ft−1 =

[
Ai

t−1

(
1 +

R i
t

Ai
t−1

)∣∣∣∣∣Ft−1

]
, (8)

where: [
R i

t

Ai
t−1

∣∣∣∣∣Ft−1

]
=

K∑
k=1

4i
k,t [y

i
k,t (ω̃

i
τ k

t
)· C̃k,t |Ft−1]− F i

t , (9)
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Farm’s Asset Modelling

Assumptions

The vector ωt = {Tt ,Pt} ∈ RS × RS represents the information
about weather conditions over time. Where Tt and Pt stand
respectively for the temperature and the log-precipitation random
variables associated to a set of S meteorological stations
non-equally spread over a given territory.

The filtration generated by the weather conditions {ωt}t≥0 is
denoted Ht while Yt represents the filtration generated by the
crop yields and we finally denoted the commodity prices vector
{Ct}t≥0 ∈ RK and its associated filtration Ct such that
Ft = Ht ∨ Ct ∨ Yt .

the Ft -measurable random variable Ri,t embodies the retained
earning generated over the ending year by the farmer i and is
function both of the weather conditions ωt through the K crop
yields generated by the farmer i at time t and Ct , the agricultural
commodity price at which he sold his harvested or not yet
harvested crops.
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Farm’s Asset Modelling

Farms Profits Dynamic

The conditional dynamic retained earnings process for farm i at
time t is written as:[

R i
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]
=
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4i
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4(i)
k,t =

δi
k,t

Ai
t−1

where δi
k,t the hectares allocated by the farmer i to

the crop k

y i
k,t

(
ω̃i
τ k

t

)
denotes the yield per hectares for a given crops and

under given weather condition ω̃t for the period of time τ k
t

C̃k,t = (c̃k,t − υi
k,t ) represents the random price of a specific

commodity k on the market at a given time t

υi
k,t represent the variable cost associated to the crop k

F i
t =

f i
t

Ai
t−1

for the fixed costs independent from the type of crop.
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Farm’s Asset Modelling

Farms Profits Dynamic

We can distinguish two sources of uncertainty:

A local risk related to weather conditions:
due to the relation between weather conditions and crops
yield
bad weather conditions in a specific region doesn’t
necessarily impact other region or other countries.
leads to a local dependence among the farmers.

A global risk related to market prices of the agricultural
commodities:

due to the relation between these prices and the profits
generated by the farmers
commodity markets globalisation and transportation
networks development linked the local prices to
international market prices
generates a global dependence: a large price decrease of
a given commodity may impact both the Romanian and the
American farmers
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Commodities Conditional Loss Distribution

We first analyze the conditional loss distribution given the
filtration of the weather conditions Ht and the yield Yt :

We assume as known and unchanged the yields
associated to each farm

We only consider uncertainty about commodity prices
We assume the following dynamic for the commodities
market prices.

dC̃t = µ̃tdt + Ω̃tdWt

where dWt is the vector of dW k
t associated to the K

Ft -standard Brownian motion {W k
t }t≥0, for k = 1 . . .K . The

matrix of variance covariance at time t is then equal to
Ω̃>t Ω̃t and

dC̃t ∼ N(µ̃tdt , Ω̃>
t Ω̃t dt)
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Commodities Conditional Loss Distribution

Assuming that the yield vector Yt = y i
k,t (ωt ) ∀i , k is known, that

C̃k,t is independent from the local weather conditions, we can
then rewrite the previous equation given

E

(
R i

t

Ai
t−1
|Ht ,Yt

)
= Hi,t (ωt)

(
C̃t−1 + µ̃t ∆t

)
− F i

t

with:

Hi,t (ωt) =

 ∆i
1,ty

i
1,t (ωt )
...

∆i
K ,ty

i
K ,t (ωt )


and:

C̃t−1 =
(

C̃1,t−1, . . . , C̃K ,t−1

)>

We can also express the profits conditional variance as follows:

σ2
i,t |Ht ,Yt = V

(
Ri,t

Ai
t−1
|Ht ,Yt

)
= Hi,t (ωt)Ω̃

>
t Ω̃tHi,t (ωt)

>
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The risk of default of the farmer i is then express as follows:
PDi |Ht ,Yt = Pr [Ai,t ≤ Di,t |Ht ,Yt ]

= Pr
[

Ri,t

Ai
t−1
≤ Di,t

Ai
t−1
− 1|Ht ,Yt

]
= Φ


(

Di,t
Ai

t−1
−1

)
−Hi,t(ωt)(C̃t−1+µ̃t )+F i

t

√
Hi,t(ωt)Ω̃>t Ω̃t Hi,t(ωt)

> |Ht ,Yt



While the default correlation between the farmer i and farmer j
can be computed under the assumption of Gaussian joint
distribution such as:

ρij |Ht ,Yt =
Pr (Ai,t ≤ Di,t ,Aj,t ≤ Dj,t |Ht ,Yt )− PDi |Ht ,YtPDj |Ht ,Yt√

PDi |Ht ,Yt (1− PDi |Ht ,Yt ) PDj |Ht ,Yt (1− PDj |Ht ,Yt )

where:

Pr
(

Ri,t

Ai
t−1
≤ Di,t

Ai
t−1
− 1, Rj,t

Aj
t−1
≤ Dj,t

Aj
t−1
− 1|Ht ,Yt

)
=
∫ Di,t

Ai
t−1
−1

0

∫ Dj,t

Aj
t−1

−1

0 MVN
(

Ri,t

Ai
t−1
,

Rj,t

Aj
t−1
, θij |Ht ,Yt

)
dRj,tdRi,t
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with:

θij |Ht ,Yt =
cov(Ri ,Rj |Ht ,Yt )√

V (Ri,t |Ht ,Yt )V (Rj,t |Ht ,Yt )

while:

cov(Ri ,Rj |Ht ,Yt ) = Hi,t (ωt)Ω̃
>
t Ω̃tHj,t (ωt)

>

and:

MVN
(

Ri,t ,Rj,t , θij |Ht ,Yt

)
= 1

2πσi,tσj,t
√

1−(θij |Ht ,Yt )2

×exp

 −1
2
(

1−(θij |Ht ,Yt )2
)

(

Ri,t−Hi,t(ωt)
(

C̃t−1+µ̃t
)

+F i
t

)2

V
(

Ri,t |Ht ,Yt
) +

(
Rj,t−Hj,t(ωt)

(
C̃t−1+µ̃t

)
+Fj

t

)2

V
(

Rj,t |Ht ,Yt
)




×exp

 −1
2
(

1−(θij |Ht ,Yt )2
)
− 2θij |Ht ,Yt

(
Ri,t−Hi,t(ωt)

(
C̃t−1+µ̃t

)
+F i

t

)(
Rj,t−Hj,t(ωt)

(
C̃t−1+µ̃t

)
+Fj

t

)
√

V
(

Ri,t |Ht ,Yt
)
V
(

Rj,t |Ht ,Yt
)


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We can then compute respectively the portfolio loss function L of
the farms’ creditor, the expected loss EL and the unexpected
loss UL which respectively represents the expected value and
the variance of the loss function associated to this portfolio of
loans.

L|Ht ,Yt =
N∑

n=1

EADnLGDnDn|Ht ,Yt

where Dn|Ht ,Yt ∼ Bernoulli (PDn|Ht ,Yt ). In order to simplify the
forthcoming notations we use PD?

n = PDn|Ht ,Yt

EL|Ht ,Yt =
N∑

n=1

EADnELGDnPD?
n

UL|Ht ,Yt =
√

V (L|Ht ,Yt )

=
√∑N

n,k=1 EADnEADk ELGDnELGDkρnk
√

PD?
n (1− PD?

n ) PD?
n (1− PD?

n )
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Weather Conditional Loss Distribution

Roadmap:

To take into consideration the impact of the weather
condition on the profit of the farmers and thus on their
probability of default we consider the yield associated to
each farm as a function of local weather conditions.

We model the yield of each farm as a linear function of non
linear estimator of temperatures and precipitations
associated to this region.

In order to obtain the temperature and precipitation
estimators for all the farms according to their respective
longitude and latitude we consider a gaussian process
model with as design points for the input space a set of
weather stations records
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Review of the Literature

Crop yield distribution modelling for calculating an insurance premium.

Parametric: Nelson and Preckel, 1989 applied a conditional beta
distribution to study corn yields modelling notwithstanding but difficult to
obtain the standard errors of moment elasticities.

Non-parametric: Goodwin and Ker 1998 proposed to consider
non-parametric density estimation techniques to work out county-level
wheat and barley area-yield distribution estimation.
non-parametric methods offer an appealing flexibility since they heavily
rely on the data sample to determine the most appropriate density
representation avoiding thus the restraining choice of a specific
parametric probability distribution, their rate of convergence to the true
distribution might be relatively slow and consequently makes those
methods data-intensive. (Sherrick et al., 2014)
the choice of the crop yields distribution or the non-parametric
estimation approach leads to out-of-sample performances and large
differences in expected payouts (Sherrick et al,2014,Woodard and
Sherrick, 2011,Sherrick et al., 2004).
More recently, a couple of articles investigate instead the yield
distribution at the farm level in order to get a better grasp on the
aggregation process to the county level (Gerlt et al. 2014, Claassen and
Just 2011).
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Time and Space Decomposition

Multivariate weather time series associated to a set of weather stations
geolocalisations not only encompasses spatial dependance structure
but also temporal relationships

The seasonality in daily temperatures and precipitations constitutes for
instance one of the main sources of data auto-correlation

The trend is modelled through a standardized time series model,
namely the Seasonal Autoregressive Integrated Moving Average
(SARIMA) (Sumer et al., 2009, Ediger et al., 2006),(Brandao and Nova,
2012, (Mills, 2014)

Each weather station observed temperatures Tt and observed
precipitations Pt cross-sectional data are expressed as a combination
of:

a national (or a county) global seasonality-adapted trend w̄t
evenly impacting all the country regions and model through
a SARIMA model
a spatial dependence structure which furnishes a local
adjustment for each weather station through a spatial
Gaussian Process f w (x)
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Time and Space Decomposition

WTt (x) representing the observed precipitation Pt or temperature Tt are
defined as follows:

W̃Tt (x) = WTt (x)− Et

[
Ex

(
WTt (x)

)
|wTt−1,w

T
t−2, . . .

]
1n (11)

= fT (x, t) + εt,x

with εt,x ∼ N
(

0, σ2
t In
)

(12)

where the integrated and seasonally adjusted conditional mean
operator Et copes with the serial correlation observed in temperature
and precipitation data at the level of the country through a
SARIMA(p, d , q)(P,D,Q)s trend formulation:

ΦP(Bs)·φ(B)·∇D
s ·∇d ·Xt = c + ΘQ(Bs)· θ(B)· εt . (13)

where the integer p, d and q is refereed respectively to the order of
autoregression, of integration and the number of moving average lags.
Bk Xt = Xt−k represents the backshift operator. While:

ε̃t
iid∼ N(0, σ2

ε̃) (14)
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Time and Space Decomposition

To impose weak stationarity to the discrete-time stochastic process
required that φ(B) 6= 0 and φ(B) has all roots outside unit disc. ∇D

s and
∇d denote respectively the seasonal difference and non-seasonal
difference components.

Furthermore, the spatial conditional expected value Ex which
corresponds to the average value of the temperatures collected by all
the weather stations on a given date t :

Ex

(
WTt (x)

)
= n−1

n∑
i=1

wTt (xi)

while the spatial Gaussian Process f w (x) is defined such as:

fT (x, t) ∼ GP (0, k(x, x∗; t , t∗))

with wTt = {wTt (x1),wTt (x2), . . . ,wTt (xn)} denotes the vector of the
temperature observed for the n weather stations with the associated n
locations vectors written as x = {x1, x2, . . . , xn}.
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Two Types of Gaussian Process

Spatial Kernel

The Gaussian Process is fully specified by a conditional mean function
µ(x) and a conditional covariance function which we consider time
independent k(x, x∗) such that:

fT (x, t) ∼ GP (µ(x), k(x, x∗))
µ(x) = E [f (x)]
k(x, x∗) = E [(f (x)− µ(x)) (f (x∗)− µ(x∗))]

where x and x∗ represent two different location vectors.

For the purpose of this paper, we assume the random variables ft (x)
associated to the location vector x = {xLg , xLt} to be characterised by a
zero-mean and the following covariance function:

k(x, x∗) = cov(ft (x), ft (x∗)) =
(
σf

t
)2

exp
[
− 1

2 (x− x∗)>Mt (x− x∗)
]

which corresponds to the squared exponential covariance function and
is fully specified by the hyperparameter σf

t and the symmetric matrix
Mt = diag(θt )

−1, where θt = {θLg
t , θ

Lt
t } corresponds to the vector of the

longitude and latitude scaling hyperparameters.
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Two Types of Gaussian Process

Estimation Procedure

If we assume that the gaussian process as zero-mean µ(x) = 0 so that
W̃Tt (x) ∼ N

(
0,K + σ2

t In
)

where K =
(
σf

t
)2

K ′ and the correlation K ′

having elements k(xi, xj) we can write then the marginal likelihood such
as:

logp(W̃Tt (x)|X ) = −1
2

W̃Tt (x)>(K +σ2
t In)−1W̃Tt (x)−1

2
log|K +σ2

t In|−
n
2

log2π

to set the hyperparameters by maximizing the marginal likelihood, we
seek the partial derivatives of the marginal likelihood w.r.t. the
hyperparameters such that:

∂

∂θj
logp(W̃Tt (x)|X , θ) =

1
2

W̃Tt (x)>K−1
W̃

∂K
∂θj

K−1
W̃

W̃Tt (x)− 1
2

tr(KW̃
∂K
∂θj

)

=
1
2

tr((αα> − K−1
W̃

)
∂K
∂θj

)

where α = K−1
W̃

W̃Tt (x) and KW̃ = K + σ2
t In
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Two Types of Gaussian Process

Local Approximation GP

A laGP is a localized approximated emulation by means of a fast
sequential updating greedy search algorithm in order to minimize the
mean-squared prediction error (MSPE).

The idea is to remove some vanishingly low impact observed sites while
maintain the rest of the reference points under certain criteria, including
active learning Cohn (ALC) and MSPE.
The iterative estimation starts from a small subset
Dn0 (x) = (Xn0 (x),Yn0 (x)) close to x and to choose xj+1 to augment
Xj (x) and thus form a new subset Dj+1(x) according to the MSPE
objective criteria to minimize which is defined as:

J (xj+1, x) = E
{[

Y(x)− µj+1

(
x; Dj+1(x), θ̂j+1

)]2
| Dj (x)

}
which can be approximated by:

J (xj+1, x) ≈ Vj

(
x|xj+1; θ̂j

)
+

(
∂µj (x; θ)

∂θ
|θ=θ̂j

)2

/Ij+1

(
θ̂j

)
,

where I is the expected Fisher information.
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Two Types of Gaussian Process

Local Approximation GP

Which is equivalent to:

argmax
xj+1∈x\xj

{Vj (x; θ)− Vj+1 (x; θ)} . (15)

with :

µ(x) =

[
(1−r>R−11n)

1>n R−11n
1>n + r>

]
R−1yt,

where r is the vector of correlations between the input x and xi=1,...,n at
the n design sites, r = [cor (f (x1), f (x)) , . . . , cor (f (xn), f (x))]. While the
mean squared error (MSE) is expressed such as follows:

Vj (x; θ) = (σ̂f
t )2·

(
1− r>R−1r +

(1−1>n R−1r)2

1>n R−11n

)
.

We then update the subset to Dj+1(x) meanwhile independently
compute the hyper-parameter θ̂j (x) | Dj (x) by maximizing the likelihood
which possibly could smooth spatially over all the locations.
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which possibly could smooth spatially over all the locations.
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The Yield Model

Yield Model

We denote ŷ i
k,t

(
ω̃i
τk

t

)
as the best linear unbiased predictor of the yield

per hectares at time t of the farm i for the k -th crop and function of the
random variable ω̃i

τk
t

which embodies the precipitation and temperature

over the period τ k
t (Bokusheva, 2014; Roberts and al., 2012) as:

ŷ i
k,t

(
ω̃i
τk

t

)
= α0 + αP,k · ŴP,ik,τk

t
+ αT ,k · ŴT ,ik,τk

t
, (16)

If we substitute the unbiased out-of-sample predictive value of weather
random variables, we will then have:

ŷ i
k,t

(
ω̃i
τk

t

)
= α0 + αP,k .

(
w̄Pτk

t
+ f̂P(xi)

)
+ αT ,k .

(
w̄Tτk

t
+ f̂T (xi)

)
where α0 is constant and

(
y i

k,t − ŷ i
k,t

(
ω̃i
τk

t

))
∼ N

(
0, Ψ i

τk
t

)
while:

w̄Tt = Et

[
Ex

(
WTt (x)

)
|wTt−1,w

T
t−2, . . .

]
corresponds to the SARIMA expected temperature at the country level.
While for the precipitations we have the same expression:

w̄Pt = Et

[
Ex

(
WPt (x)

)
|wPt−1,w

P
t−2, . . .

]
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The Yield Model

Weather Conditional Loss Distribution

Assuming that ω̃i
t = {W̃T ,ik,t , W̃

P,i
k,t } are both independently and

identically normally distributed leads to the farm-i ’s expected
yield ŷ i

k,t

(
ω̃i
τ k

t

)
with a variance equals to the i-th element on the

diagonal of the variance covariance matrix:
V
(

yk,t

(
ω̃τ k

t

))
= α2

P,k .V
(

W̃Pt (x)
)

+ α2
T ,k .V

(
W̃Tt (x)

)
+ Ψ i

τ k
t

where:
V
(

W̃Tt (x)
)

= V
[
Ex
(
WTt (x)

)
|wTt−1,w

T
t−2, . . .

]
In + K (x,x) + σ2

t In,

While V
[
Ex
(
WTt (x)

)
|wTt−1,w

T
t−2, . . .

]
can be derived from Γ(x),

the autocovariance generating function (AGF) which for
summable autocovariance functions

∑∞
h=−∞ γ(h) <∞ is

defined such that:

Γ(x) =
∞∑

h=−∞

γ(h)xh (17)

where γ(h) is the process autocavariance between xt and xt+h.
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The Yield Model

Weather Conditional Loss Distribution

We can then determine another conditional probability of default
which is linked now to the weather conditions ωt and their local
impact conditionally on the K net variable prices of the
commodities C̃t =

(
C̃1

t , . . . , C̃
K
t

)
.

Using the properties of the Gaussian process we can then write
the value of the conditional expected returns conditionally on the
commodity prices filtration Ct :

E
(

Ri,t
Ai

t−1
|Ht , Ct

)
=
∑K

k=1 ∆i
k,tE

[
y i

k,t

(
ω̃i
τk

t

)
C̃k,t |Ht , Ct

]
− F i

t

=
∑K

k=1 ∆i
k,tE

[
y i

k,t

(
ω̃i
τk

t

)
|Ht , Ct

]
C̃k,t − F i

t

= C̃t


∆i

1,tE
[

y i
1,t

(
ω̃i
τk

t

)
|Ht ,

]
...

∆i
K ,tE

[
y i

K ,t

(
ω̃i
τk

t

)
|Ht ,

]
− F i

t
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The Yield Model

While the log-return variance conditionally on the K net variable
prices of the commodities C̃t =

(
C̃1

t , . . . , C̃
K
t

)
is given by:

V

(
Ri,t

Ai
t−1
|Ht , Ct

)
= C̃>t



(
∆i

1,t

)2
V
[

y i
1,t

(
ω̃i
τk

t

)
|Ht

]
...(

∆i
K ,t

)2
V
[

y i
K ,t

(
ω̃i
τk

t

)
|Ht

]
 C̃t

Eventually the local probability of default of the farmer i can be
expressed such as:

PDi |Ht , Ct = Pr
[
Ai,t ≤ Di,t |Ht , Ct

]
= Pr

[
Ri

t
Ai

t−1
≤ Di,t

Ai,t−1
− 1|Ht , Ct

]

= Φ



(
Di,t

Ai,t−1
−1
)
−C̃t



∆i
1,tE

[
y i

1,t

(
ω̃i
τk

t

)∣∣∣∣Ht ]

...

∆i
K ,tE

[
y i

K ,t

(
ω̃i
τk

t

)∣∣∣∣Ht ]


+F i

t

√√√√V
(

Ri,t
Ai

t−1
|Ht ,Ct

)


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The Yield Model

Weather Conditional Loss Distribution

The default correlation between the farmer i and farmer j can
naturally be computed under the assumption of Gaussian joint
distribution such as:

ρij |Ht , Ct =
Pr (Ai,t ≤ Di,t ,Aj,t ≤ Dj,t |Ht , Ct )− PDi |Ht , CtPDj |Ht , Ct√

PDi |Ht , Ct (1− PDi |Ht , Ct ) PDj |Ht , Ct (1− PDj |Ht , Ct )

where:

Pr
(

R i
t

Ai
t−1
≤ Di,t

Ai,t−1
− 1, R j

t

Aj
t−1
≤ Dj,t

Aj,t−1
− 1|Ht , Ct

)
=
∫ Di,t

Ai,t−1
−1

0

∫ Dj,t
Aj,t−1

−1

0 MVN
(

Ri,t

Ai
t−1
,

Rj,t

Aj
t−1
, θij |Ht , Ct

)
dRj,tdRi,t

with:

θij |Ht , Ct =
Cov(Ri,t ,Rj,t |Ht , Ct )√

V (Ri,t |Ht , Ct )V (Rj,t |Ht , Ct )
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The Yield Model

Weather Conditional Loss Distribution

while:

Cov(Ri ,Rj |Ht , Ct ) = C̃>t


∆i

1,t Cov
[

y i
1,t

(
ω̃i
τk

t

)
, y j

1,t

(
ω̃

j
τk

t

)
|Ht ,

]
∆j

1,t

...

∆i
K ,t Cov

[
y i

K ,t

(
ω̃i
τk

t

)
, y j

K ,t

(
ω̃

j
τk

t

)
|Ht ,

]
∆j

K ,t

 C̃t

where:

Cov
[

y i
1,t

(
ω̃i
τk

t

)
, y j

1,t

(
ω̃

j
τk

t

)
|Ht ,

]
= V

(
yk,t

(
ω̃τk

t

))
i,j

with
V
(

yk,t

(
ω̃τk

t

))
= α2
P,k .V

(
W̃Pt (x)

)
+ α2
T ,k .V

(
W̃Tt (x)

)
+ Ψ i

τk
t

and

V
(

W̃Tt (x)
)

= V
[
Ex
(
WTt (x)

)
|wTt−1,w

T
t−2, . . .

]
In + K (x, x) + σ2

t In,
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The Yield Model

Weather Conditional Loss Distribution

and:
MVN

(
Ri,t ,Rj,t , θij |Ht , Ct

)
= 1

2π
√

V(Ri,t |Ht ,Ct )V(Rj,t |Ht ,Ct )
(

1−(θij |Ht ,Ct )
2
)

×exp

{
−1

2
(

1−(θij |Ht ,Ct )
2
) ( (Ri,t−E(Ri,t |Ht ,Ct ))2

V(Ri,t |Ht ,Ct )
+

(Rj,t−E(Rj,t |Ht ,Ct ))2

V(Rj,t |Ht ,Ct )

)}

×exp

{
−1

2
(

1−(θij |Ht ,Ct )
2
)
(
− 2(θij |Ht ,Ct )(Ri,t−E(Ri,t |Ht ,Ct ))(Rj,t−E(Rj,t |Ht ,Ct ))√

V(Ri,t |Ht ,Ct )
√

V(Rj,t|Ht ,Ct )

)}

we can then compute respectively the portfolio loss function L,
the expected loss EL and the unexpected loss UL which
respectively represents the expected value and the variance of
the loss function associated to this portfolio of loans conditionally
to the filtrations Ct and Ht .

L|Ht , Ct =
N∑

n=1

EADnLGDnDn|Ht , Ct

where Dn|Ht , Ct ∼ Bernoulli (PDn|Ht , Ct )

EL|Ht , Ct =
N∑

n=1

EADnELGDnPDn|Ht , Ct
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UL|Ht , Ct =
√

V (L|Ht , Ct )

=

√√√√√ N∑
n,k=1

EADnEADk ELGDnELGDkρnk

√
PDn|Ht , Ct (1− PDn|Ht , Ct ) PDk |Ht , Ct (1− PDk |Ht , Ct )

(18)
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The Yield Model

Farm’s Return Distribution

Considering the initial equation in matrix form:[
Rt ◦ A◦−1

t−1

∣∣∣Ft−1

]
=
[
4t ◦ yt (ω̃)· C̃k,t |Ft−1

]
− Ft , (19)

The global risk being the product of two MVN distributions we
obtain a unique MVN distribution with expected value:

µR = ΣR

(
Σ−1

y µy + Σ−1
C µC

)
(20)

and a variance equals to:

ΣR =
(

Σ−1
y + Σ−1

C

)−1
(21)

with a normalizing constant:

ΣR = (2π)−n/2|Σy +ΣC |−1/2exp
(
−1

2
(µy − µR)> (Σy + ΣC) (µy − µR)

)
(22)
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Data Description

Data

Real data obtained from a french fertilizer company, the
Roullier Group.

2014 clients database containing 11,982 farms located in
41 regions in Romania,
Data attributes include:

type of crops,

crops rotation,
number of hectares cultivated
a precise geolocalisation of each farm.

This farms sample adds up to 4.6 million hectares which
occupied over one-third of the total Romanian utilized
agricultural area (UAA)
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Data Description

Utilized Agricultural Area

Utilized agricultural area (UAA) in EU:
(40.0%) of the total land area of the EU-28 in 2013

1. France with 27,8 million hectares (16%)
2. Spain, with 23,75 million hectares (13,6%)
3. United Kingdom, with 16,88 million hectares (9,7%)
4. Germany, with 16,7 million hectares (9,6%)
5. Poland, with 14,4 million hectares (8,3%)
6. Romania holds 7,6% of the , with 13,05 million
hectares. . .
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Data Description

Utilized Agricultural Area

Utilised agricultural area by land use:

Figure: Utilised agricultural area by land use, EU-28, 2013 (% share of utilised agricultural area)
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Data Description

Agricultural Output Breakdown

Figure: Agricultural Output per Type, Romania, 2013 (% share of utilised agricultural area)
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Data Description

Farming Data

The Group Roullier provided us a part of their clients database with:
Precise geolocalisation of each farm
Accounting information about more than 12,000 farms located in
Romania for the last 5 years
Types of crop and number of hectares cultivated per farm
Yields per hectare per crop per region since 1990

We collected the market prices time series for the five main crops:
Wheat
Corn
Barley
Sunflower
Rapeseed

We got access to a European weather database with the following
characteristics:

Daily precipitations (over more than 20 years)
Daily mean, max and min temperatures (over more than 20 years)
For 40 different weather stations in Romania, Ukraine, Moldova,
Hungary and Serbia
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Data Description

Data

Table: Crops growing seasons and corresponding critical growing
period

2 Crops Whole growing period critical growing period
Wheat (W) Sep/Oct - July/Aug April - July
Corn (C) April/May - Aug/Sep June - Aug

(a) Corn arable hectares (b) Wheat arable hectares
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Models Comparison

Data

We compare several models:

Physical distance ϕ between any two locations given longitude λx and
latitude ωx is measured as in (Norton et al., 2012):

ϕ = R·Cos−1 (Sin (ω1) ·Sin (ω2) + Cos (ω1) ·Cos (ω2) ·Cos (λ2 − λ1))

where R is a constant stand for the radius of the sphere (3963.1 miles).



Introduction Credit Risk Commodity Risk Weather Risk Data and Results Conclusion

Results

Model Fitting Quality
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Results

The SARIMA time series coupled spatial Gaussian
process model exhibits distinguishable superiority
compared with nonGP approach

Weighted distance-hectares ratio method (Model (5),
Model (9) and Model (13)) provides us the best estimation
results compared with the other weighting methods.



Introduction Credit Risk Commodity Risk Weather Risk Data and Results Conclusion

Results

Farms Size Dispersion

degree of dispersion of the farms crop size characterizing
the region of Constanta, a highly productive area of the
south east of Romania

(c) Corn arable hectares (d) Wheat arable hectares
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spatio-temporal weather information.

Through our model we distinguish a global and a local risk of credit
dependence

We treat separately the conditional loss distribution for the commodity
risk and the conditional loss distribution associated to the weather risk

If we assume the two sources of risk as independent we also proposed
a version where both risk sources are included
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