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@ Weather is inherently one of the most important factors
deciding farming practices related to:
e Land use
@ Yield improvement or hedging measures
e Economic policies in agricultural sectors
@ While the hedging solutions against climatic hazard remain
under developed outside of US and Canada
(Paulson et al. 2010)

= According to the CRED, in 2016, the economic losses
due to floods and droughts continue to increase, making
them one of the most damaging natural disasters for our
economies worldwide.
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Commodities and Weather Risk

Winter-Spring Mean Rainfall deciles for 12 moderate-
strong classical El Niiio events

Figure: El Nifio background, source: nab
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Impact of El Nifio

@ El Nino affects temperature and rainfall in North and South
America, Africa, East and Southeast Asia, the Indian
subcontinent, Australia and the Pacific.

@ Locally, the phenomenon causes generally lower winter and
spring rainfall in northern and eastern Australia.

@ The impact of any given El Nifio event is highly variable. Many
previous El Nifio events have been associated with lower farm
GDP. Real farm GDP declined between 0.7% and 25.4% during
the last five El Nifios, with an average decline of 12.6%.

@ "Pressing need for an adapted, durable and scalable hedging
solution" (OECD)

= who fosters the development of insurance products such as
weather, crop or revenue insurance policies which could help the
agricultural businesses to overcome the more frequent and
damaging weather events.
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Accounting basics

The Balance Sheet

31/12]...

Assets

Equity-Liabilities

Non Current assets
- Intangible assets
« Tangible assets

= Investments

Equity
Retained earnings

Current Assets

* Inventories

« Trade receivables

* Marketable securities
+ Cash & equivalents

Long term debts

- debts > 1year

Current liabilities

=Trade payables

~debts < 1 year

Flg ure: Balance Sheet

@ Double entry principle means that assets always equal liabilities
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Accounting basics

The Balance Sheet

31/12]...

Assets

Equity-Liabilities

Non Current assets
- Intangible assets
« Tangible assets

= Investments

Equity
Retained earnings

Current Assets

Long term debts

- debts > 1year

* Inventories

« Trade receivables Current liabilities

+ Marketable securities +Trade payables

« Cash & equivalents ~debts < 1 year

Flg ure: Balance Sheet

@ Double entry principle means that assets always equal liabilities

@ In our case we are going to model the dynamic of the assets <
dynamic of the liabilities = dynamic of the profits

@ The profits are thus partially explaining the dynamic of the assets



Credit Risk
[ leJele]e]

Merton’s Model

Merton’s Main Assumptions

@ No transaction costs nor taxes.



Credit Risk
[ leJele]e]

Merton’s Model

Merton’s Main Assumptions

@ No transaction costs nor taxes.
@ We can borrow and lend at the same rate of interest



Credit Risk
[ leJele]e]

Merton’s Model

Merton’s Main Assumptions

@ No transaction costs nor taxes.
@ We can borrow and lend at the same rate of interest
@ Short sales of all assets are allowed



Credit Risk
[ leJele]e]

Merton’s Model

Merton’s Main Assumptions

@ No transaction costs nor taxes.

@ We can borrow and lend at the same rate of interest
@ Short sales of all assets are allowed

@ The MM proposition | is holding



Credit Risk
[ leJele]e]

Merton’s Model

Merton’s Main Assumptions

@ No transaction costs nor taxes.

@ We can borrow and lend at the same rate of interest
@ Short sales of all assets are allowed

@ The MM proposition | is holding

@ The term structure is flat and known with certainty which means
that at time t a $1 nominal bond value of maturity T equals:

P(t,T)=e 770 (1)
Where r is the risk free rate.



Credit Risk
[ leJele]e]

Merton’s Model

Merton’s Main Assumptions

No transaction costs nor taxes.

We can borrow and lend at the same rate of interest
Short sales of all assets are allowed

The MM proposition | is holding

The term structure is flat and known with certainty which means
that at time t a $1 nominal bond value of maturity T equals:

P(t,T)=e 770 (1)
Where r is the risk free rate.

@ We can describe the value of the firm, V, with a diffusion type
stochastic process



Credit Risk
[ leJele]e]

Merton’s Model

Merton’s Main Assumptions

No transaction costs nor taxes.

We can borrow and lend at the same rate of interest
Short sales of all assets are allowed

The MM proposition | is holding

The term structure is flat and known with certainty which means
that at time t a $1 nominal bond value of maturity T equals:

P(t,T)=e 770 (1)
Where r is the risk free rate.

@ We can describe the value of the firm, V, with a diffusion type
stochastic process

@ Value of the assets follows a Geometric Brownian Motion:
Merton derived the value of three assets among which the
zero-coupon (but also the coupon-bearing and callable bonds)

th = Vt([r — 5]dt + O'th) (2)
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Merton’s Model

Merton’s Model Breakthroughs

@ The company issue a zero-coupon bond with face value B and
maturity T.

@ Default occurs when the value V7 of the asset is below the level
of the debt B.

© Default may occur only at date T in which case the creditors
take over the firm without incurring any distress costs and realize
the amount V7, so the payoff to the creditor at time T is:

D(Vr, T) = min(Vr, B) = B—max(B — Vr,0)

max (B — Vr,0) is nothing else than a Short Put option on the
Assets of the company, with strike B

Pront =
Lirnited

v

Profit +

B Assets
Value
Loss=
Substarntial
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Merton’s Model Breakthroughs (cont’d)

@ On the contrary, the shareholder:

@ Owns the company V;
© Issued (sold) the bond B
© Owns the put option on the assets with strike B??

@ — Put-call parity tells us that the shareholder holds a call:

E(W;, T)= Vr— B+ max(B - Vr,0) = max(Vr — B,0) (3)
So at time t the value of the bond and the stock are:
D(Vi, T) = B~ Put(Vs, B,r, R~ t,0)

4
E(Vi,t) = Call(V;, B,r, T — t,0) “)
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Merton’s Model Breakthroughs (cont’d)

@ On the contrary, the shareholder:

@ Owns the company V;
© Issued (sold) the bond B
© Owns the put option on the assets with strike B??

@ — Put-call parity tells us that the shareholder holds a call:

E(W;, T)= Vr— B+ max(B - Vr,0) = max(Vr — B,0) (3)
So at time t the value of the bond and the stock are:
D(V;, T)=B— Put(V;,B,r,R—t,0)
E(W;,t)=Call(V;,B,r, T — t, o)

Promt +

(4)

Profit =

uniimitec &
B
[]
Assets
Loss = Value .

Limiter

Loss _

Long Call
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Merton’s Model

Whys and Wherefores of the Merton’s Model

@ As far as we know the diffusion process associated to the assets
we can obtain the value of the debt and the equity of a given
company through the Black, Scholes and Merton (1973) formula:

C[Vi,B,r, T —t,0] = Ct = N(dy)V; — N(dx)Be~ "7~

5
P[V;,B,r,T —t,0] = Py = C; + Be~"(T-0-V ()

where:

n(§)+(r+5)(T-1)
oV T —t
b=0d —ovT -t

di =
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Merton’s Model

Whys and Wherefores of the Merton’s Model (cont’d)

@ We then get the probability of default PD; for any company
i as far as we manage to model the asset dynamic A;.

& Probability Distribution of
Asset Values

Assets 4, /\/\/\/\/\/\//\/:
|

Debt D,

Distance-to-Default DD

4— Probability of Default PD

> Time

Figure: Graph representation of the Merton’s Theory.
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Whys and Wherefores of the Merton’s Model (cont’d)

@ We then get the probability of default PD; for any company
i as far as we manage to model the asset dynamic A;.

& Probability Distribution of
Asset Values

Assets 4, /\/\/\/\/\/\//\/:
|

Debt D,

Distance-to-Default DD

4— Probability of Default PD

> Time

Figure: Graph representation of the Merton’s Theory.

@ Contribution of our work: How can we model farms assets
dynamic using price of the commaodities and weather
conditions?
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Farm’s Asset Modelling

Assumptions

@ For each farmer we know the breakdown of land use per type of
crop

@ The asset value of a farm is a cumulative function of the farm
profits (under the retained earnings mechanism)

@ Conditional on the global filtration, we define an adapted
process for the asset value of farm j at time t:

AllFi—1 = [Al_y + R+ AE] + AD;, | Fii] (7)

If we assume that the farmer will not issue debt or equity from
one year to another AE{ = 0 and AD; =

) ) /:;i
AlFi—1 = l t—1 (1 + A/ )

]:t 11 ZA Wi @) K ) Cht| Fi1] — Fi, ©)

Fio 1] ) (8)

where:
RI
AI
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@ The vector wy = {77, P1} € RS x RS represents the information
about weather conditions over time. Where 7; and P; stand
respectively for the temperature and the log-precipitation random
variables associated to a set of S meteorological stations
non-equally spread over a given territory.
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Farm’s Asset Modelling

Assumptions

@ The vector wy = {77, P1} € RS x RS represents the information
about weather conditions over time. Where 7; and P; stand
respectively for the temperature and the log-precipitation random
variables associated to a set of S meteorological stations
non-equally spread over a given territory.

@ The filtration generated by the weather conditions {w;}+>o is
denoted #; while ) represents the filtration generated by the
crop yields and we finally denoted the commodity prices vector
{Ci}is0 € RK and its associated filtration C; such that
Fi Zj'[tvct\/yt.

@ the Fi-measurable random variable R; ; embodies the retained
earning generated over the ending year by the farmer i and is
function both of the weather conditions w; through the K crop
yields generated by the farmer i at time t and C;, the agricultural
commodity price at which he sold his harvested or not yet
harvested crops.
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Farm’s Asset Modelling

Farms Profits Dynamic

The conditional dynamic retained earnings process for farm i at
time t is written as:

i
AL

K
fH] = DhilVit (@) el Ferl = F, - (10)
k=1
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o A, = A,“ where § , the hectares allocated by the farmer i to
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Farms Profits Dynamic

The conditional dynamic retained earnings process for farm i at
time t is written as:

AI

K
ft 1] = ZAk,t[le(,t(&;—f)' Cr,t|Ft-1] = Ft, (10)
k=1

o A, = A,k - where 5 , the hectares allocated by the farmer i to
the crop k

° yk ¢ ( ) denotes the yield per hectares for a given crops and
under given weather condition & for the period of time 7%

° ék,t = (Cx,t — v,"”) represents the random price of a specific
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Farms Profits Dynamic

The conditional dynamic retained earnings process for farm i at
time t is written as:

: K
Ri S .
A -7:t 11 = ZA;(J[,V/I(,[(W;.{()' Ci 1| Ft-1] — Fi, (10)
k=1
o A, = /f,“ where 4] , the hectares allocated by the farmer i to
1 ,
the crop k

° yk ¢ ( ) denotes the yield per hectares for a given crops and
under given weather condition & for the period of time 7%
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Farm’s Asset Modelling

Farms Profits Dynamic

The conditional dynamic retained earnings process for farm i at
time t is written as:

: K
Ri S .
A -7:t 11 = ZA;(J[,V/I(,[(W;.{()' Ci 1| Ft-1] — Fi, (10)
k=1
o A, = /f,“ where 4] , the hectares allocated by the farmer i to
1 ,
the crop k

° yk ¢ ( ) denotes the yield per hectares for a given crops and
under given weather condition & for the period of time 7%

° ék,t = (Cx,t — v,"”) represents the random price of a specific
commodity k on the market at a given time ¢

° ’U;'(J represent the variable cost associated to the crop k

@ Fl=
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Farm’s Asset Modelling

Farms Profits Dynamic

We can distinguish two sources of uncertainty:

@ Alocal risk related to weather conditions:
@ due to the relation between weather conditions and crops
yield
o bad weather conditions in a specific region doesn't
necessarily impact other region or other countries.
@ leads to a local dependence among the farmers.

@ A global risk related to market prices of the agricultural
commodities:

@ due to the relation between these prices and the profits
generated by the farmers

e commodity markets globalisation and transportation
networks development linked the local prices to
international market prices

@ generates a global dependence: a large price decrease of
a given commodity may impact both the Romanian and the
American farmers
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@ We first analyze the conditional loss distribution given the
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e We assume as known and unchanged the yields
associated to each farm
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Commodities Conditional Loss Distribution

@ We first analyze the conditional loss distribution given the
filtration of the weather conditions H; and the yield );:

e We assume as known and unchanged the yields
associated to each farm

@ We only consider uncertainty about commodity prices

o We assume the following dynamic for the commodities
market prices.

dét = ﬂtdt+ﬁ,dW,

where dW, is the vector of dW} associated to the K
F-standard Brownian motion { W/}, for k =1... K. The
matrix of variance covariance at time t is then equal to
Q Q and

dC; ~ N(fuedt, 2] Q; dt)
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Commodities Conditional Loss Distribution

@ Assuming that the yield vector V; = yj ,(w) Vi, k is known, that

Ck.+ is independent from the local weather conditions, we can
then rewrite the previous equation given

e =H Ci1 + i F
A |H¢, YVt | = Hig (wt)( t—1 +HtAt) - F
with: o
A% Y1t (wi)
Hit (wt) = :
AN/ (wt)
and:

Cor = (Cutrs i)
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Commodities Conditional Loss Distribution

@ Assuming that the yield vector V; = yj ,(w) Vi, k is known, that

Ck.+ is independent from the local weather conditions, we can
then rewrite the previous equation given

E s |H,,y,> = Hiy (w1) (é,_1 +;1,At) —F
with: o
A% Y1t (wi)
Hit (wt) = :
Ai{,t}//i(,t (wt)
and:

Cor = (Cutrs i)

@ We can also express the profits conditional variance as follows:

of [ He, Vi =V (A’ |Ht7yt> = Hit (w) QMg (@)



Commodity Risk
[e]e]e] lele]

@ The risk of default of the farmer i is then express as follows:
PDiHt, Yt = Pr{Ai+ < Djt|Ht, V1]
—pr[pe < B0,y

A
D; . )
(A,-"[ —1) _Hi‘t(Wt)(Cl—1+I1t)+Ftl
= —

|Ht7yt
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@ The risk of default of the farmer i is then express as follows:
PDi|Ht, Yt = Pr[Ai: < D; I|tht]
= Pr[&'r = A” _1|,Ht7yt}
- 1

/
t 1

) H; t(wt) C: 1+I-M)+F'

= ( = [He, Ve

\/Hnwtﬁﬂ (wr) "

@ While the default correlation between the farmer i and farmer j
can be computed under the assumption of Gaussian joint
distribution such as:

Pr(Ai: < Dit,Ajt < Dji|He, Vi) — PDi|Hit, Vi PDj| Hi, Vi

i\ He, Vi =
pilte. Y1 /PDi|H, Yt (1 — PDi|H¢, Vi) PDj|Hi, Vi (1 — PDj[He, Vi)
where:
Di, R
Pr (A‘,F < A -1, ;/_: < A/;_ —17‘[1,3)1)
D D

N MVN(A'?1 it 9,,|Ht,yt) dR; R ¢
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with:
04 He Vi = cov(R;, Rj|H¢, V)
I‘]' ty Jt —
VYV (RidHe, Vo)V (Rt He, Vi)
while:
g T
cov(R;, Rj| M, Vi) = Hit (wi)€2; Q:Hj ¢ (wt)
and:
- _ 1
) . i o
wexp -1 (R —Hiae) (G s +ar) +F)? N (Rjyf’"i,l(“l)(clﬁ“If)”:{)
2(1—(01 7, 20)2) V(Hl-,,\’Ht,y,) V(H’I-J\H,,yt)
woxp 4 _29ij‘Htvy[(ﬁi‘[*Hi,t(W!)(at—1*‘It)JrFD (F’j,[’Hi,l(""t)<él—1*ﬁI)JfF{)
2(1— (6517, 21)2) \/V(R,-),|H,,y[)v(/=fj1,|n,,y,)
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@ We can then compute respectively the portfolio loss function L of
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@ We can then compute respectively the portfolio loss function L of
the farms’ creditor, the expected loss EL and the unexpected
loss UL which respectively represents the expected value and
the variance of the loss function associated to this portfolio of
loans.

N
LM, Vi =Y  EAD\LGD,Dy[H1, Vi
n=1
where Dp|H;, V: ~ Bernoulli (PDn|H;, Vt). In order to simplify the
forthcoming notations we use PD}, = PD,|H;:, Vs

N
EL[M:, Y+ =Y  EAD,ELGD,PD;,
n=1

UL[He, Ve = /V (L[He, V)
_ \/Zﬁ,H EAD,EADELGD,ELGDkpnk+/PD; (1 — PD}) PD;; (1 — PD)
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Roadmap:

o To take into consideration the impact of the weather
condition on the profit of the farmers and thus on their
probability of default we consider the yield associated to
each farm as a function of local weather conditions.

o We model the yield of each farm as a linear function of non
linear estimator of temperatures and precipitations
associated to this region.

@ In order to obtain the temperature and precipitation
estimators for all the farms according to their respective
longitude and latitude we consider a gaussian process
model with as design points for the input space a set of
weather stations records
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Crop yield distribution modelling for calculating an insurance premium.

@ Parametric: Nelson and Preckel, 1989 applied a conditional beta
distribution to study corn yields modelling notwithstanding but difficult to
obtain the standard errors of moment elasticities.

@ Non-parametric: Goodwin and Ker 1998 proposed to consider
non-parametric density estimation techniques to work out county-level
wheat and barley area-yield distribution estimation.

@ non-parametric methods offer an appealing flexibility since they heavily
rely on the data sample to determine the most appropriate density
representation avoiding thus the restraining choice of a specific
parametric probability distribution, their rate of convergence to the true
distribution might be relatively slow and consequently makes those
methods data-intensive. (Sherrick et al., 2014)

@ the choice of the crop yields distribution or the non-parametric
estimation approach leads to out-of-sample performances and large
differences in expected payouts (Sherrick et al,2014,Woodard and
Sherrick, 2011,Sherrick et al., 2004).

@ More recently, a couple of articles investigate instead the yield
distribution at the farm level in order to get a better grasp on the
aggregation process to the county level (Gerlt et al. 2014, Claassen and
Just 2011).
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@ Multivariate weather time series associated to a set of weather stations
geolocalisations not only encompasses spatial dependance structure
but also temporal relationships

@ The seasonality in daily temperatures and precipitations constitutes for
instance one of the main sources of data auto-correlation

@ The trend is modelled through a standardized time series model,
namely the Seasonal Autoregressive Integrated Moving Average
(SARIMA) (Sumer et al., 2009, Ediger et al., 2006),(Brandao and Nova,
2012, (Mills, 2014)

@ Each weather station observed temperatures 7; and observed

precipitations P; cross-sectional data are expressed as a combination
of:

@ a national (or a county) global seasonality-adapted trend w;
evenly impacting all the country regions and model through
a SARIMA model

@ a spatial dependence structure which furnishes a local
adjustment for each weather station through a spatial
Gaussian Process f*(x)
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@ W/ (x) representing the observed precipitation P; or temperature 7; are
defined as follows:

W7 (x) = W7 (x) — B [Bx (W7 () W7 g W7z, [ 10 (1)
= fT(X7 t) + €t,x
with erx ~ N (o, a;?ln) (12)
@ where the integrated and seasonally adjusted conditional mean
operator E; copes with the serial correlation observed in temperature

and precipitation data at the level of the country through a
SARIMA(p, d, q)(P, D, Q)s trend formulation:

®p(B°)- ¢(B)- V2-V?-X; = ¢ + ©q(B°)-6(B)- &t (13)

where the integer p, d and q is refereed respectively to the order of
autoregression, of integration and the number of moving average lags.
B*X; = X;_x represents the backshift operator. While:

iid

& ~ N(0,0%) (14)
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@ To impose weak stationarity to the discrete-time stochastic process
required that ¢(B) # 0 and ¢(B) has all roots outside unit disc. V2 and
V¢ denote respectively the seasonal difference and non-seasonal
difference components.

@ Furthermore, the spatial conditional expected value Ex which
corresponds to the average value of the temperatures collected by all
the weather stations on a given date t:

n
Ex (W,T(x)) =" 3" w/ (%)
i=1
@ while the spatial Gaussian Process f*(x) is defined such as:
FT(x,t) ~ GP (0, k(X,X"; t,1"))

with w] = {w/ (x1), w/ (X2),...,w] (xn)} denotes the vector of the
temperature observed for the n weather stations with the associated n
locations vectors written as X = {X1,X2,...,Xn}.
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k(x,x*) = E[(f(x) — p(x)) (F(x*) — p(x))]

where x and x* represent two different location vectors.
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Spatial Kernel

@ The Gaussian Process is fully specified by a conditional mean function
1(x) and a conditional covariance function which we consider time
independent k(x,x*) such that:

7 (x,1)  ~ GP (u(x), k(x,x"))
11(x) = E[f(x)]
k(x,x*) = E[(f(x) — p(x)) (F(x*) — p(x))]

where x and x* represent two different location vectors.

@ For the purpose of this paper, we assume the random variables f(x)
associated to the location vector x = {x%9, x''} to be characterised by a
zero-mean and the following covariance function:

k(% X") = cov(fi(X), i(x")) = (of)exp [—; (x—x*)T M (x — x*)]

which corresponds to the squared exponential covariance function and
is fully specified by the hyperparameter o and the symmetric matrix
M; = diag(6:)~", where 6; = {0,“77 6} corresponds to the vector of the
longitude and latitude scaling hyperparameters.
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Estimation Procedure

@ If we assume that the gaussian process as zero-mean p(x) = 0 so that
W/ (x) ~ N (0,K + 07l,) where K = (a{)2 K’ and the correlation K’
having elements k(xi, X;) we can write then the marginal likelihood such
as:

- 1 e 1
logp(W] (x)/X) = — ;W7 (x) " (K+0f1s) "W (x)— 5 log|K-+0fls|- 3 log2r
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Estimation Procedure

@ If we assume that the gaussian process as zero-mean p(x) = 0 so that
W/ (x) ~ N (0,K + 07l,) where K = (a{)2 K’ and the correlation K’
having elements k(xi, X;) we can write then the marginal likelihood such
as:

_ 1~ .
logp(W/ (x)|X) = —JW7 (x)7 (K1) "W{ ()~ L log|K-+ofla| 1 log2r

@ to set the hyperparameters by maximizing the marginal likelihood, we
seek the partial derivatives of the marginal likelihood w.r.t. the
hyperparameters such that:

9 7 1 K v 1 0K
5 S logp(W] ()|X,0) = 5W] ()" Ky = Ke "W (x) - 2 Kagg.)
1 oK
= grllea” — KD

where o = K‘TTW,T(X) and K = K + 0?1,
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Two Types of Gaussian Process

Local Approximation GP

@ AlaGP is a localized approximated emulation by means of a fast
sequential updating greedy search algorithm in order to minimize the
mean-squared prediction error (MSPE).

@ The idea is to remove some vanishingly low impact observed sites while
maintain the rest of the reference points under certain criteria, including
active learning Cohn (ALC) and MSPE.

@ The iterative estimation starts from a small subset
Dny(x) = (Xny (X), Yny(x)) close to x and to choose x;;1 to augment
Xi(x) and thus form a new subset D;,(x) according to the MSPE
objective criteria to minimize which is defined as:

R 2
301,90 = B { [Y00 — s (30101000011 1 D00}
which can be approximated by:
~ ouj (x; 0 2 A
T (X1, %) = V; (X|X/+1;9j) + (% \g:§j> [ (9/') :

where I is the expected Fisher information.
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Two Types of Gaussian Process

Local Approximation GP

@ Which is equivalent to:

argmax {V;(X;0) — Vi1 (x;0)}. (15)

Xj 11 EX\X;

@ with :
1—rTR 1, _
Hix) = {%W + rT} Ry,
where r is the vector of correlations between the input x and Xj_y,.._ n at
the n design sites, r = [cor (f(X1), f(X)), ..., cor (f(Xn), f(X))]. While the
mean squared error (MSE) is expressed such as follows:

10 A—11,

Vj (x:0) = (67)* (1 "R 'ry M) .
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Two Types of Gaussian Process

Local Approximation GP

@ Which is equivalent to:

argmax {V;(X;0) — Vi1 (x;0)}. (15)

Xj 11 EX\X;

@ with :

1—rT R, _
uix) = {(1:/?7—11)1I+r1 Ry,

n

where r is the vector of correlations between the input x and Xj_1....,
the n design sites, r = [cor (f(X1), f(X)), ..., cor (f(Xn), f(X))]. While the
mean squared error (MSE) is expressed such as follows:

N _ 1—17 R=1r)?
V,-(x;@) = (o’tf)z- <1 — I’TR 1r+ (*l;‘rﬂifﬁnr)) .

@ We then update the subset to Dj.1(x) meanwhile independently
compute the hyper-parameter 6;(x) | D;(x) by maximizing the likelihood
which possibly could smooth spatially over all the locations.
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per hectares at time ¢ of the farm 7 for the k-th crop and function of the
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Yield Model

@ We denote j/,’;,t (a/ftk) as the best linear unbiased predictor of the yield

per hectares at time ¢ of the farm 7 for the k-th crop and function of the
random variable &’ , which embodies the precipitation and temperature
t
over the period 7 (Bokusheva, 2014; Roberts and al., 2012) as:
7 (&;tk) = a0+ apk Wf;{k + OCT,k'WZ:;ft}m (16)

@ If we substitute the unbiased out-of-sample predictive value of weather
random variables, we will then have:

it (@lﬂk) = ao + apk. (WZ?( + ?P(Xi)) + aT k. (V_VT? + ?T(xi))
where oy is constant and (y,’;, — Vit (w'ﬂk)) ~N (0, W;tk) while:
W =B [Bx (W7 () (Wl g, wl o, .. |

corresponds to the SARIMA expected temperature at the country level.
While for the precipitations we have the same expression:

W =E [Ex (WF(X)) Wi, wis, .. ]
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The Yield Model

Weather Conditional Loss Distribution

@ Assuming that @] = {W, ;, W} ;} are both independently and
identically normally distributed leads to the farm-/’s expected
yield f/,ij <(.:'J;_tk> with a variance equals to the i-th element on the
diagonal of the variance covariance matrix:
V (vt (9p)) = 03V (WP(R)) + 03 V (W () + 92,
where:
V(W7 () =V [Bx (W7 (x) W7 W] g, ] I+ K (%) + 0F

While V [Ex (W7 (x)) w/_,,w/ ,,...] can be derived from (x),
the autocovariance generating function (AGF) which for
summable autocovariance functions >~,° __ ~v(h) < co is
defined such that:

o0

rx)= > y(hx" (17)

h=—oc0

where ~(h) is the process autocavariance between x; and x; .
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The Yield Model

Weather Conditional Loss Distribution

@ We can then determine another conditional probability of default
which is linked now to the weather conditions w; and their local
impact conditionally on the K net variable prices of the

commodities C; = (C,‘ _— C,K) :
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The Yield Model

Weather Conditional Loss Distribution

@ We can then determine another conditional probability of default
which is linked now to the weather conditions w; and their local
impact conditionally on the K net variable prices of the

commodities C; = (C,‘ _— C,K)
@ Using the properties of the Gaussian process we can then write

the value of the conditional expected returns conditionally on the
commodity prices filtration C;:

R; i i » = .
E (A’LZ \Hhct) =Yk Al B\ Vi wfrtk Ck,t|7‘Lt7Ct:| —F]

— K i i ~ i s i
= Zk:1 Ak’tE yk,t thk [He, Ct Ck,t - Ft

ALE |y (a;k> |H,,}
t

st (2 ]

1
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The Yield Model

While the log-return variance conditionally on the K net variable
prices of the commodities C; = (C} N CtK) is given by:

R (00" b o)
v (A,"r Ht,Cr> =C : G

t—1 ) 2 ) )
(4 ()
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The Yield Model

While the log-return variance conditionally on the K net variable
prices of the commodities C; = (C} N CtK) is given by:

. ()" )
\Y% (A’z 1 H,,C,) =C' - : C
(3" )

@ Eventually the local probability of default of the farmer i can be
expressed such as:

PD;|Ht,Ct = Pr Fi,r_ <Dh; t\HuCr]

— Rt _
= Pr A= A, ] 1‘Hz,ct
8y e v (a1, ) |2
o i . _
(Ai,rlf1 _1)_0‘ : +F
Al E [y;;,, (ovik) ‘ Hil
) t
v fit |H¢,C
A A’;71 tt
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The Yield Model

Weather Conditional Loss Distribution

The default correlation between the farmer i and farmer j can
naturally be computed under the assumption of Gaussian joint

distribution such as:
Pr(Ait < Dit,Ajt < Djt|Ht, Ct) — PDi|H¢, CtPD;|Hy, Cy

l'H ,C =
pijl M, Ct /PDi[H¢, Ct (1 — PDi[H4, Cr) PDj|Hy,Ce (1 — PDj[Hy,Cy)

where:

R Di Rl D
PI’ <A§1 S Ai‘l—1 1, Alt.71 S Aj,t—1 1|Ht, Ct
D,

Pi.t _q .I'J 1 ) :
— fOA” -1 fOAf*"‘ MVN <A7'_"1 ; A?': ,9/'j|7'lt,Cr) dR; :dR; ;
with:
Cov(Ri, Rjt|Ht,Ct)

0;|Hy,Cr =
I = AT (Rial M, Co) V (R He. Co)
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The Yield Model

Weather Conditional Loss Distribution

while:

Cov(R;, Rj|H1,Cr) = G : Ci

where:

ot (2) e () ] =),
with

v (vie (2, tk)) = a2,V (WP()) + a5 . v (W] (%)) + vy
and

V(W7 () =V [Ex (W7 (0) W] W] 5, | In + K(X,X) + o,
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The Yield Model

Weather Conditional Loss Distribution

and:
MVN (R t, R t, 0| Ht,Ct) = L
2w¢v(n,,m,,c,)v( il #e.C) (1= (05170.¢0)7)

X exp —1 ((H:: E(Rj t|Ht, Ct) ( —E(R ¢ He, C[)) )}

2(17(9,;\71,5,)2) V(R | H1.Ct) V(R e He.Ct)

“ex 2(0;1H¢,Ct) (Ri,t—E(Ri 1| H,C1)) (Ry, 1 —E(Ry,¢ | H,C1))
p J—
2(1- Gmucf %) V(B0 RLITHCH

we can then compute respectively the portfolio loss function L,
the expected loss EL and the unexpected loss UL which
respectively represents the expected value and the variance of
the loss function associated to this portfolio of loans conditionally
to the filtrations C; and H;.

N
L|H,Cr = EADyLGDnDn|Hy,Ct
n=1
where Dy|H¢, Ct ~ Bernoulli (PDp|Hy, Ct)
N

EL[Ht,Ct = > EAD,ELGDnPDp|H;, Ct
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The Yield Model

Weather Conditional Loss Distribution

ULIHt, Cr =/ V (LIHy, Ct)

N
= J > EAD,,EADkELGDnELGka,,k\/PD,,|’H,,C,(1 — PDp|H¢, Ct) PD|Hy, Ct (1 — PD|Hy, Cy)
n,k=1
(18)
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The Yield Model

Farm’s Return Distribution

Considering the initial equation in matrix form:
Ao A7) |Fia] = [Aro (@) Gl Fa R (19)

The global risk being the product of two MVN distributions we
obtain a unique MVN distribution with expected value:

R =XnR (z;‘uy + ngc) (20)
and a variance equals to:
—1
Th= (2;1 n 25‘) 21)
with a normalizing constant:

1
Tr = (2m) "2, +Xc|Pexp (‘2(My —1R) " (Zy + ) (ny — NH))
(22)
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Data Description

Data

@ Real data obtained from a french fertilizer company, the
Roullier Group.

@ 2014 clients database containing 11,982 farms located in
41 regions in Romania,
@ Data attributes include:
o type of crops,
@ crops rotation,
e number of hectares cultivated
@ a precise geolocalisation of each farm.
@ This farms sample adds up to 4.6 million hectares which
occupied over one-third of the total Romanian utilized
agricultural area (UAA)
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Utilized agricultural area (UAA) in EU:
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Data Description

Utilized Agricultural Area

Utilized agricultural area (UAA) in EU:
(40.0%) of the total land area of the EU-28 in 2013

1. France with 27,8 million hectares (16%)

2. Spain, with 23,75 million hectares (13,6%)

3. United Kingdom, with 16,88 million hectares (9,7%)
4. Germany, with 16,7 million hectares (9,6%)

5. Poland, with 14,4 million hectares (8,3%)
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Data Description

Utilized Agricultural Area

Utilized agricultural area (UAA) in EU:
(40.0%) of the total land area of the EU-28 in 2013

1. France with 27,8 million hectares (16%)

2. Spain, with 23,75 million hectares (13,6%)

3. United Kingdom, with 16,88 million hectares (9,7%)
4. Germany, with 16,7 million hectares (9,6%)

5. Poland, with 14,4 million hectares (8,3%)

6.

h

Romania holds 7,6% of the , with 13,05 million
ectares. .
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Data Description

Utilized Agricultural Area

Utilised agricultural area by land use:

Permanent grassland and meadow
notusedfor production, eligible for
subsidies

Kitchen
gardens

Permanent
crops
5.9%

Cereals
332%

Pasture
and meadow
219%

Other arable
land
26.5%

(") Estimates.
Source: Eurostat (online data code: ef_oluft)
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Data Description

Agricultural Output Breakdown

2015 | 2014 2015
output components ™o e | PIIOT T of otar [ % SEU-
Cereais: 4501 | 3853 | 3184 | 330% | 6.4%
Wheat and spelt 1as| 1zs2 azes|  aagw| 4o
Rye and mesiin 4 4 4 00%|  0.4%
Barley 357 341 317 34%|  3.5%
Coroa s | o | ol sew
Grain maize 63| 2125 aas3| 15| 16.5%
Rice 15| 10 12 oa%f 4%
Other cereals 42| 38| E oa%l  19%
Industrial crops: 1238 | 1143 | 1109 | 1170 | 57%
Ol seeds and
oleaginous fruits 1125] 1012 1002| 10.6%) 8.0%
Protein crops 29| 3| 34 oanl 0%
Raw tobaceo 2| 1 1 00%|  03%
Sugar beet 39| 50| 3 03%|  0.9%
Other industrial crops 4| 43 39 4% 24%
Forage plants 1705 | 1965 | 1314 | 13.9% | sa%
horicaure producs | 2920 | 2021 | 1878 | 1g00 | sisu
Potatoes 1280 | 161 | 678 7.2% 7.1%
Fruits 1087 | 1137 | 1003 | 116% | 43%
Wine 306 240 185 20% | o0.8%
Olve oi : : : :
Other crop products 35 1 10 o1% | 0.3%
crop output 12185| 11040 oaso|  70.2%| as%
Animals: 1o11 | 1801 | 1801 | aas% | Lo%
Cattie 303 271 333 83w 1o%
bigs 965 8% 70| 104k 25%
Equines 2 19} 2) oe%|  22%
Sheep and goats 19 253 225 sen|  a3%
Poultry a2s| as1 a1 now|  21%
Other animals i 1 1 00%|  0.0%
Animal products: 1996 | 2076 | 2207 | s5.a% | 3.4%
Hilk vor2f raos| i azow| 2%
Eggs 662 685 | 1saw| 2%
Other animal products 322 285 319 so%|  21%
Animal output 3908 3967|1801 20.8%| 25%
‘9’:“:"“"' goods 16092 15007 13458 100.0%) 3.6%)
Gross value added at Jena|  soss|  eass oo

basic prices

Upsos en 205

Flgure: Agricultural Output per Type, Romania, 2013 (% share of utilised agricultural area)
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Data Description

Farming Data

The Group Roullier provided us a part of their clients database with:
@ Precise geolocalisation of each farm
@ Accounting information about more than 12,000 farms located in
Romania for the last 5 years
@ Types of crop and number of hectares cultivated per farm
@ Yields per hectare per crop per region since 1990
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Data Description

Farming Data

The Group Roullier provided us a part of their clients database with:
@ Precise geolocalisation of each farm
@ Accounting information about more than 12,000 farms located in
Romania for the last 5 years
@ Types of crop and number of hectares cultivated per farm
@ Yields per hectare per crop per region since 1990
We collected the market prices time series for the five main crops:
Wheat
Corn
Barley
Sunflower
Rapeseed
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Data Description

Farming Data

The Group Roullier provided us a part of their clients database with:
@ Precise geolocalisation of each farm
@ Accounting information about more than 12,000 farms located in
Romania for the last 5 years
@ Types of crop and number of hectares cultivated per farm
@ Yields per hectare per crop per region since 1990
We collected the market prices time series for the five main crops:
Wheat
Corn
Barley
Sunflower
Rapeseed
We got access to a European weather database with the following
characteristics:
@ Daily precipitations (over more than 20 years)
@ Daily mean, max and min temperatures (over more than 20 years)
@ For 40 different weather stations in Romania, Ukraine, Moldova,
Hungary and Serbia

®© 6 6 0660
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Data Description

Data

Table: Crops growing seasons and corresponding critical growing
period

2 Crops Whole growing period  critical growing period
Wheat (W) | Sep/Oct - July/Aug April - July
Corn (C) April/May - Aug/Sep June - Aug

Iatitude

R -
m :
X
urgid
%

1
\ﬁ\emmi
longitude longitude

(a) Corn arable hectares

(b) Wheat arable hectares
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Models Comparison

Data

@ We compare several models:

Group Model

Most nearest station(region central point)
Most nearest station(farm level simple average)
Weighted inverse distance

Weighted farm hectares

Weighted distance-hectares

Simple average

Weighted inverse distance

Weighted farm hectares

) Weighted distance-hectares

10) Simple average

(11) Weighted inverse distance

(12) \\'m'ghmd farm hectares

(13) Weighted distance-hectares

W e

Without GP

.._.3.._..._..._.

388

With laGP

&

(
(:
(:
(
(5
(
(
(8
)
(

With GPfit

@ Physical distance ¢ between any two locations given longitude Ay and
latitude wy is measured as in (Norton et al., 2012):

© = R-Cos™ " (Sin(w+) - Sin (wz) + Cos (w+) - Cos (wz) - Cos (M2 — A1))

where R is a constant stand for the radius of the sphere (3963.1 miles).
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Model Fitting Quality

Data and Results
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Regio Wheat Regn

o AWR IBQ Arh KS P 1B A KS
Arad W6 0% 0 1 0 |Awd T 0 0
Bihor 9% 010 0 0 0| Bihor 1 00
Consa 000 |Conm 1o
Dol 00 0 |Dof 1o
Giurgin 00 0 |Giuga o0
aj 000 |G o0
Hargita 00 0 |Hgit RO
Huedas 00 0 |Huden [
o I ™ o0
Al ™ 1o
Args 00 0 [Ams 00
B 00 0 |Bea "0
Bitra Nesud 00 0 |BstiaNasd o0
Batosanl. 0 0 0 |Botosmi 5 [
Brila e 00 0 |Bra TR o000
Brasov " 8l 0 0 0| Brasov 44384 o0 1 [
Buau ’ 0 0 0 |Bum 5660 w0
Calaras 00 0 |Cdmd GBOF w00
Cars Swern 00 0| CamsSenrin w01
Chj [ w o100
Costuta 10041 9049 00 0 |Costanta w0
Dubota 1313 489 10 0 |Dambosita o000
Galati Ws 90 00 0| Galti S 05 0 00
Blomita U811 1467 00 0 |Lmita a0 0 00
Isi 3 000 | awe 0y o000
Mz 00 0 |Maramurs om0 0
Mekedini 00 0| Mebedint R0 0 0 )
Mures 0 0 0| Mures 12 M0 L]
Neant 0 0 0| Neamt 151766 8 964 0 1 0
S 000 |Sk N 06 0 10
Sl 000 |Sh 5 05 100
Tinis 00 0 |Tims 00 0 0
Viea 000 |V w00
Oit 0 0 0 |0kt 0 (]
Palova 00 0 |Palem w0
Sau e 000 |Sdhe o000
Suerra 000 | Swmm ol
Teloorman 00 0 |Teeorman w000
Tileea 00 0 |Tdea w0
: 00 | Vashi [E] I
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Results

@ The SARIMA time series coupled spatial Gaussian
process model exhibits distinguishable superiority
compared with nonGP approach

. . Wheat Com
Confidence interwal — Growp — Model v, - cous(41)  Prolific zone{16) Whole regions(41) ~ Prolific zone(15)
m % R o i
2) 46% 6% % 4%
Without GP (3) 51% % % ot
) 51% 69% 6% 94%
) 4% % 6% o
) % 63% a3 100%
Panel : 5% . . (7] 3% 5% 8% 100%
With LGP t.»% TI% 5% % %
() 6% 5% 9% 100%
(10) % 04 985, 100%
o 11 % u% %% 100%
With GPt :12; % 8% 955 100%
(13) % 100% 9 100%

@ Weighted distance-hectares ratio method (Model (5),
Model (9) and Model (13)) provides us the best estimation
results compared with the other weighting methods.
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Farms Size Dispersion

Data and Results
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@ degree of dispersion of the farms crop size characterizing
the region of Constanta, a highly productive area of the

SO

latitude

uth east of Romania

PIRNTE AP

145 Jalomita

aa4n

aan

438N

436N T T T T
275 e B5E 29

fongitude

(c) Corn arable hectares

JYESYE pEd
lalomita

o]

416N

440n

atitude

a2

U0 e
. ®
438N

4360

275 e B5E 29
longitude

(d) Wheat arable hectares
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Results

The Balance Sheet

Credit risk profile through Weather risk model at 0.95 quantile weather condition

Statistic 1987 sample 103 sample

Benchmark  Correl=0  Correl=1 | Benchmark Correl=0  Correl=1
Actual farm obs. 1442 1442 1442 63 63 63
Mean Prob. of default @ 5.79% 5.79% @ 6.20% 6.20%

Statistic 1987 sar 103 sample
! encl mmrl. el=0 Correl Benchmatk Correl=0 Correl=1

Actual farm obs. Z 1442 1442 Y 63 63

Mean Prob. of default ; B‘Z 4.66% 4.66% 3.98% 3.98%

More diversified than average for
standard weather conditions

Less diversified than average for
extreme weather conditions
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@ We proposed a credit risk model taking into account the impacts of the
weather conditions upon farmers profits
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weather conditions upon farmers profits

@ We combine GP with a SARIMA time-series model for handling
spatio-temporal weather information.

@ Through our model we distinguish a global and a local risk of credit
dependence

@ We treat separately the conditional loss distribution for the commodity
risk and the conditional loss distribution associated to the weather risk
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@ We proposed a credit risk model taking into account the impacts of the
weather conditions upon farmers profits

@ We combine GP with a SARIMA time-series model for handling
spatio-temporal weather information.

@ Through our model we distinguish a global and a local risk of credit
dependence

@ We treat separately the conditional loss distribution for the commodity
risk and the conditional loss distribution associated to the weather risk

@ If we assume the two sources of risk as independent we also proposed
a version where both risk sources are included

... Thank you!
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Thank you
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