Multivariate spatio-temporal stochastic weather generators based on HMM models

A. Cuzol, LMBA - Université de Bretagne Sud
DESRES project / D. Allard, V. Monbet, M. Thakur

Workshop "Modèles spatio-temporels en météorologie et océanographie"
Rennes, 28 novembre 2018
Stochastic weather generators

• Stochastic tools for generating sequences of meteorological variables.
• Used in impact studies when climate is involved.

\[
\text{Synthetic weather conditions} \rightarrow \text{System} \rightarrow \text{Distribution of the response}
\]

• Most usual applications: hydrology, agriculture.

Historical data

10 years of meteorological data (rainfall, temperature, solar radiation, humidity, wind speed,...) on several locations

Stochastic model

SWGEN calibrated on historical data

Synthetic data

Large number of synthetic sequences with statistical properties similar to original data
Framework / objective

West France data:

- 10 years of daily data
- 3 variables: Radiation, Temperature, Wind intensity
- Summer months: June-July-August
- Focus on West area in this talk: 8 stations

⇒ Objective: construct a multivariate spatio-temporal generator for existing or new stations.
What do we want to reproduce?

⇒ Spatial correlations:

- Black points: observed correlations.
- Red line: LOESS approximation.
- Long range correlation for the temperature.
- Shorter range for radiation and wind.
What do we want to reproduce?

⇒ Temporal correlations:

Plomelin:

Saint-Jacques-de-la-Lande:

La Roche-sur-Yon:

Variables have different temporal behaviors.
What do we want to reproduce?

⇒ Relations between meteorological variables:

Temperature and wind for one location (La Roche-sur-Yon)
Existing methods

- Non parametric methods (based on data : bootstrap, analogs)
 - statistical properties are reproduced by construction;
 - unable to create unobserved meteorological situations;
 - multisite, unable to simulate new locations.

- Parametric models
 ⇒ Allard, Bourotte (2016), Ailliot, Monbet (2017), Monbet's talk (METMA 2018)
 - multivariate, multisite or spatial (⇒ new locations);
 - can simulate non observed situations;
 - weather types can be introduced.

⇒ Within the family of parametric models, we propose a multivariate spatio-temporal generator, including weather types through an HMM model.
First HMM model

\[
\begin{align*}
\text{Weather type} & \quad \cdots \quad \rightarrow \quad X_{t-1} \quad \rightarrow \quad X_t \quad \rightarrow \quad X_{t+1} \quad \rightarrow \quad \cdots \\
\text{Meteo variables} & \quad \cdots \quad \downarrow \quad \downarrow \quad \downarrow \\
& \quad Y_{t-1} \quad Y_t \quad Y_{t+1} \quad \cdots
\end{align*}
\]

where:

- \(X \) is the hidden weather type modeled as a first order Markov chain, with homogeneous transitions.
- \(Y \) contains the meteorological variables.
- \(\forall t \quad Y_t \) is Gaussian conditionally to the weather type \(X_t \):

\[
Y_t | X_t = x \sim \mathcal{N}(\mathbf{m}_x, \Sigma_x)
\]
Extension toward a joint model

Weather type: \[\cdots \rightarrow \begin{pmatrix} X_{t-1} \\ X_t \end{pmatrix} \rightarrow \begin{pmatrix} X_t \\ X_{t+1} \end{pmatrix} \rightarrow \begin{pmatrix} X_{t+1} \\ X_{t+2} \end{pmatrix} \rightarrow \cdots \]

Meteo variables: \[\cdots \rightarrow \begin{pmatrix} Y_{t-1} \\ Y_t \end{pmatrix} \rightarrow \begin{pmatrix} Y_t \\ Y_{t+1} \end{pmatrix} \rightarrow \begin{pmatrix} Y_{t+1} \\ Y_{t+2} \end{pmatrix} \rightarrow \cdots \]

where \(\begin{pmatrix} Y_t \\ Y_{t+1} \end{pmatrix} \) is Gaussian conditionally to \(\begin{pmatrix} X_t \\ X_{t+1} \end{pmatrix} \):

\[\begin{pmatrix} Y_t \\ Y_{t+1} \end{pmatrix} \mid \begin{pmatrix} X_t = x \\ X_{t+1} = x' \end{pmatrix} \sim \mathcal{N} \left(\begin{pmatrix} m_x \\ m_{x'} \end{pmatrix}, \begin{pmatrix} \Sigma_x & \Sigma_{x,x'} \\ \Sigma_{x,x'} & \Sigma_{x'} \end{pmatrix} \right) \]
This joint model implies:

\[Y_{t+1} | Y_t = y, X_t = x, X_{t+1} = x' \sim \mathcal{N} \left(\mathbf{m}_x' + \Sigma_{x,x'} \Sigma_x^{-1} (y - \mathbf{m}_x), \Sigma_{x'} - \Sigma_{x,x'} \Sigma_x^{-1} \Sigma_{x,x}' \right) \]

\[
\Rightarrow \text{ The following temporal relationships between weather types and meteorological states are described:}

\[
\begin{array}{cccccc}
\text{Weather type} & \cdots & \rightarrow & X_{t-1} & \rightarrow & X_t & \rightarrow & X_{t+1} & \rightarrow & \cdots \\
\downarrow & \downarrow \\
\text{Meteo variables} & \cdots & \rightarrow & Y_{t-1} & \rightarrow & Y_t & \rightarrow & Y_{t+1} & \rightarrow & \cdots
\end{array}
\]

\]
Covariance model

- We use the multivariate Gneiting-Matérn space-time model (Bourotte et al. 2016)

\[
Cov(Y_i(s, t), Y_j(s + h, t + u)) = \frac{\sigma_i \sigma_j}{\psi(u^2)} \rho_{ij} \mathcal{M} \left(\frac{h}{\psi(u^2)^{1/2}}; r_{ij}, \nu_{ij} \right)
\]

where we need the case \(u = 0 \) and \(u = 1 \).

- It is a valid matrix-valued covariance function if, for all \(i, j = 1, \cdots, p \),

\[
\begin{align*}
 r_{ij} &= ((r_i^2 + r_j^2)/2)^{1/2} \\
 \nu_{ij} &= (\nu_i + \nu_j)/2 \\
 \rho_{ij} &= \beta_{ij} \frac{\Gamma(\nu_{ij})}{\Gamma(\nu_i)^{1/2} \Gamma(\nu_j)^{1/2}} \frac{r_{ij}^{\nu_i} r_{ij}^{\nu_j}}{r_{ij}^{2\nu_{ij}}}
\end{align*}
\]

where \(\sigma_i, \nu_i, r_i \) are positive for all \(i = 1, \cdots, p \), \(\beta = (\beta_{ij})_{i,j=1}^p \) is a correlation matrix \(\psi(t) \), \(t \geq 0 \), a positive function with a completely monotone derivative.

- This model is non separable with parameters constant in time and space.
- We allow \(\psi \) to vary with the variable.
- All parameters vary with the weather regimes.
Estimation

Unknown parameters:

- For p variables and S sites we have to estimate for each regime: $\mathbf{m} \in \mathbb{R}^{p \times S}$ and $(\sigma_i, r_i, \nu_i, \beta_i, \psi_i)$ $\forall i = 1, \ldots, p$.

- Initial states probabilities and matrix of transitions:
 If $N = 2$ (weather states "1" and "2"):

<table>
<thead>
<tr>
<th></th>
<th>11</th>
<th>12</th>
<th>21</th>
<th>22</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>p_{111}</td>
<td>p_{112}</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>12</td>
<td>0</td>
<td>0</td>
<td>p_{121}</td>
<td>p_{122}</td>
</tr>
<tr>
<td>21</td>
<td>p_{211}</td>
<td>p_{212}</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>22</td>
<td>0</td>
<td>0</td>
<td>p_{221}</td>
<td>p_{222}</td>
</tr>
</tbody>
</table>

Estimation steps:

- Initialization: k-means (N^2 classes) + gaussian mixture model.

- Initial values of \mathbf{m} and $(\sigma_i, r_i, \nu_i, \beta_i, \psi_i)$ $\forall i = 1, \ldots, p$ are then obtained from the resulting means and covariances in each regime.

- EM algorithm.
Prediction problem

In order to predict new sites at unobserved locations, a spatial trend is adjusted for the mean of each variable in each regime:

\[
\hat{m}_i(Lon, Lat) = \hat{\alpha}_0^i + \hat{\alpha}_1^i Lon + \hat{\alpha}_2^i Lat \quad \forall i = 1, \ldots, p
\]
... but this trend hypothesis is not satisfying for the wind:
Weather states and transitions

For instance, for one summer in Plomelin:

- **State 1 (grey)**: \(\bar{R} = 2234, \bar{T} = 19, \bar{W} = 1.8 \)
 \(\Rightarrow \) more sun, ”hotter”, less wind

- **State 2 (white)**: \(\bar{R} = 1880, \bar{T} = 17, \bar{W} = 2.8 \)
 \(\Rightarrow \) less sun, ”colder”, more wind

- **Covariance parameters**:
 \(\sigma_W \) higher in state 2
 Spatial and temporal ranges higher in state 1

- **Transition probabilities**:

<table>
<thead>
<tr>
<th></th>
<th>11</th>
<th>12</th>
<th>21</th>
<th>22</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>0.83</td>
<td>0.17</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>12</td>
<td>0</td>
<td>0</td>
<td>0.18</td>
<td>0.82</td>
</tr>
<tr>
<td>21</td>
<td>0.77</td>
<td>0.23</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>22</td>
<td>0</td>
<td>0</td>
<td>0.22</td>
<td>0.78</td>
</tr>
</tbody>
</table>
Spatial means

Results

Radiation

Temperature

Wind intensity

- *NB* time series of 10 years of summer months have been simulated (*NB* = 20).
- Simulated means of all variables are good for observed stations.
- Saint-Jacques-de-La-Lande is not observed: hard to predict a local unknown behavior for the wind.
Spatial standard deviations

Radiation

Temperature

Wind intensity

Standard deviations are smoothed, local behaviors are not taken into account by the model (\(\sigma_i\) for each variable \(i\) does not depend on the location).
Spatial cross-correlations

- Black points: observed correlations.
- Red line: LOESS approximation.
- Grey lines: LOESS approximation for $NB = 20$ simulations of 10 years.
- Temperature: the correlation is under-estimated for long distances.
- Wind: under-estimation of correlation except for very short distances.
Temporal correlations

For Plomelin, Saint-Jacques-de-la-Lande and La Roche-sur-Yon:

- Black lines: observed correlations.
- Grey lines: correlations for $NB = 20$ simulations of 10 years.
- Temporal correlations of temperatures are underestimated.
- Ψ is allowed to vary with i in the model but is not able to describe the specific behavior of the temperature.
Relations between meteorological variables

Temperature and Wind in one station (La Roche-sur-Yon): observations / 1 simulation (10 years)
Relations between meteorological variables

Temperature and Wind in one station (Saint-Jacques, predicted) : observations / 1 simulation (10 years)

⇒ The wind is under-estimated but the relation between the two variables is well reproduced.
Relations between sites

Temperature in two stations (Plomelin and Saint-Jacques): observations / 1 simulation (10 years)

⇒ Distributions are well reproduced.
What is the benefit of coupling?

HMM model without coupling:

- **Weather type**: \(\cdots \rightarrow X_{t-1} \rightarrow X_t \rightarrow X_{t+1} \rightarrow \cdots \)
- **Meteo variables**: \(\cdots \rightarrow Y_{t-1} \rightarrow Y_t \rightarrow Y_{t+1} \rightarrow \cdots \)

HMM model with coupling:

- **Weather type**: \(\cdots \rightarrow X_{t-1} \rightarrow X_t \rightarrow X_{t+1} \rightarrow \cdots \)
- **Meteo variables**: \(\cdots \rightarrow Y_{t-1} \rightarrow Y_t \rightarrow Y_{t+1} \rightarrow \cdots \)
What is the benefit of coupling?

Temporal correlations for Plomelin, Saint-Jacques-de-la-Lande and La Roche-sur-Yon:

Without coupling

- **Ray**
- **Temp**
- **Vent**

With coupling

- **Radiation**
- **Temperature**
- **Wind**
What is the benefit of coupling?

Spatial correlations **without** coupling

Spatial correlations **with** coupling
Conclusion and perspectives

- Hard to predict local phenomena for unobserved locations: need of a better prediction of local means and standard deviations.
- Bad estimation of Ψ_i when variables have different temporal behaviors.
- Has to be tested with a higher number of locations \Rightarrow use of composite likelihood.
- The specific problem of precipitation has to be studied.
- This approach has to be compared with parametric MSAR.